期刊文献+

基于能量转换的仿人机器人摆动腿落地改进阻抗控制方法 被引量:1

Improved impedance control of humanoid robot swing leg landing based on energy conversion
下载PDF
导出
摘要 针对没有缓冲装置的双足仿人机器人在快速运动中摆动腿落地会对机器人身体稳定性带来影响的问题,结合阻抗控制的控制特点,从能量转换的角度进行分析,提出了基于能量转换的仿人机器人摆动腿落地改进阻抗控制方法。以阻抗控制方法为基础,通过对机器人摆动腿落地时末端速度以及落地后质心速度的分析,结合在摆动腿落地这一过程中能量的转换关系,对机器人摆动腿各关节的力进行控制,从而达到机器人摆动腿缓冲落地的目的。最后,将此方法应用于机器人Nao,实验证明,机器人摆动腿落地时与地面的瞬时作用力减小,达到了缓冲落地的效果,同时也起到了预先控制的作用。 According to no buffering device of biped humanoid robot in the rapid movement of swing leg landing will affect the stability of the robot body problems, combined with the impedance control characteristics, analyzed from the perspective of energy conversion based on energy conversion of the humanoid robot leg landing, an improved impedance control method was proposed. Based on the impedance control method as the foundation, through analysis with the robot leg swing fall terminal velocity and barycenter velocity after landing, combined with the energy conversion in the swing leg landing process. the authors controlled the force of robot leg when landing, achieved the purpose that the swing leg landing buffered. Finally, this method was applied to robot Nao. The experiment proves that the instantaneous force is decreased when robot leg swing landing ground, achieves the effect of buffer landing, and the pre-control was implemented.
出处 《计算机应用》 CSCD 北大核心 2012年第A02期188-191,209,共5页 journal of Computer Applications
关键词 仿人机器人 阻抗控制 预先控制 能量转换 缓冲落地 机器人Nao 质量中心轨迹 humanoid robot impedance control pre-eontrol energy conversion buffer ground robot Nao Center Of Gravity (COG) path
  • 相关文献

参考文献11

  • 1HIRA1 K, HIROSE M, HACKSAW Y, et al. Development of Hon- da humanoid robot[ C]//IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1988:1321-1326.
  • 2KANEKO K, KANEHIRO F, KAJITA S, et al. Design of prototype humanoid robotics platform for HRP [ C]//IEEE/RJS International Conference on Intelligent Robots and Systems. Lausanne, Switzer- land: IEEE, 2002:2431 -2436.
  • 3YAMAGUCH1 I, INOUSE S, NISHINO D, et al. Development of a biped.,d humanoid robot having antagonistic driven joints and three DOF trunk[ C]// IEEE International Colfference on Robotics and Automation. Victoria, BC, Canada: IEEE, 1988: 96 -101.
  • 4KIN J Y, PARK I W, LEE I, et al. system design and dynamic walking of humanoid robot KHR-2[ C]//IEEE International Confer- ence on Robotics and Automatiom Barcelona, Spain: IEEE, 2005: 1443 - 1448.
  • 5GIENGER M, LFFLER K, PFEIFFER K. Towards the design of a biped jogging robot [C ]// IEEE International Conference on Robotics and Automation. Seoul, Korea: IEEE, 2011: 4140- 4145.
  • 6HASHIMOTO K, SUGAHARA Y, SUNAZUKA H, et al. Biped landing pattern modification method with nonlinear compliance control[ C]// IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006:1213-1218.
  • 7赵建东,王自上,付成龙,陈恳.仿人机器人摆动脚落地碰撞补偿控制研究[J].北京交通大学学报,2009,33(1):45-49. 被引量:5
  • 8肖乐,丁丽霞,苏亚佩,唐月娇.仿人机器人稳定行走控制研究[J].常熟理工学院学报,2010,24(2):72-75. 被引量:1
  • 9李建,陈卫东,王丽军,高雪官,杨军,李慕君.未知不平整地面上的双足步行稳定控制[J].电子学报,2010,38(11):2669-2674. 被引量:9
  • 10帅梅,付成龙,杨向东,陈恳.不平整地面仿人机器人行走控制策略[J].机械工程学报,2006,42(8):1-6. 被引量:7

二级参考文献36

  • 1FU C L, CHEN K. Gait Synthesis and Sensory Control of Stair-Climbing for a Humanoid Robot[J]. IEEE Transaction on Industrial Electronics, 2008,55(2) :2111 - 2120.
  • 2ZHAO J D, LIU Z, FU C L. Self-Regulating Fuzzy Control of Ankle Joint of A Biped Humanoid Robot Based on Z M P Error[ C ] // Proceedings of 11-th International Symposium in Artificial Life and Robotics, 2006:695 - 698.
  • 3Shigeru K, Kei O, Masayuki I. Bracing Behavior in Humanoid Through Preview Control of Impact Disturbance [C] // Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots, 2005 : 301 - 306.
  • 4Kim J H, Oh J H. Walking Control of the Humanoid Platform KHR-1 Based on Torque Feedback Control[ C]//Pro- ceedings of the 2004 IEEE International Conference on Robotics & Automation, 2004: 623- 628.
  • 5Kim Y D, Lee B J, Yoo J K, et al. Compensation for the Landing Impact Force of A Humanoid Robot by Time Domain Passivity Approach [ C ] // Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006: 1225- 1230.
  • 6Dragomir N, Nenchev, Akinori N. Experimental Validation of Ankle and Hip Strategies for Balance Recovery with A Biped Subjected to An Impact[ C] J// Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:4035 - 4040.
  • 7Li Z H, Huang Q, Li K J, et al. Stability Criterion and Pattern Planning for Humanoid Running[C]. Proceedings of the 2004 IEEE International Conference on Robotics and Automation. 2004: 1059-1064.
  • 8Plestan F, Grizzle W, Wesrerveh R, et al. Stable Walking of a 7-DOF Biped RobotiC]. IEEE Transactions on Robotics and Automation, 2004-19(4) : 653-668.
  • 9Vukobratovic M, Stepanenko J. On the Stability of Anthropomorphic Systems[J]. Mathematical Biosciences, 1972, 15: 1-37.
  • 10Yin Chenbo, Albert Albers, et al. Stability Maintenance of a Humanoid Robot under Disturbance with Fictitious Zero-Moment Point [C]. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton Alberta, Canada: 2005-08:1780-1787.

共引文献53

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部