期刊文献+

在不准确方差下带随机系数矩阵的卡尔曼滤波稳定性 被引量:8

L_2-stability of Discrete-time Kalman Filter with Random Coefficients under Incorrect Covariance
下载PDF
导出
摘要 针对离散时间线性随机系统,研究了卡尔曼滤波的L2-稳定性问题.考虑具有这两个特点的系统:1)系数矩阵是随机的;2)过程噪声、量测噪声、初始估计误差的方差矩阵不准确.在系数矩阵有界、条件能观测、初始估计误差有界的假设下,得到了卡尔曼滤波的L2-稳定性.同时,建立了卡尔曼滤波和状态空间最小二乘的等价性,并在该等价性基础上得到状态空间最小二乘的状态估计误差L2-稳定性.最后,数值仿真说明了卡尔曼滤波的有效性. This paper studies the L2-stability of Kalman filter for discrete-time linear stochastic systems. Two main features, i.e., random coefficient matrices and incorrect covariances of process noise, measurement noise and initial value, are emphasized. Under suitable conditions, including boundedness of coefficient matrices, conditional observability and boundedness of initial error and noises, L2-stability of Kalman filter is achieved. The equivalence between Kalman filter and state-space least squares algorithm is established. Based on this equivalence, L2-stability of state estimation error by state-space least squares is also obtained. A numerical example is given to demonstrate the effectiveness of Kalman filtering algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2013年第1期43-52,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61174143)资助~~
关键词 状态估计 稳定性 卡尔曼滤波 状态空间最小二乘 State estimation, stability, Kalman filter, state-space least squares
  • 相关文献

参考文献3

二级参考文献37

  • 1Levy B C, Castanon D A, Verghese G C, Willsky A S. A scattering framework for decentralized estimation problems. Automatica, 1983, 19(4): 373-384.
  • 2Kerr T. Decentralized filtering and redundancy management for multisensor navigation. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(1): 83-119.
  • 3Brumback B D, Srinath M D. A fault-tolerant multisensor navigation system design. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(6): 738-756.
  • 4Carlson N A. Federated filter for fault-tolerant integrated navigation systems. In: Proceedings of IEEE Position Location and Navigation Symposium. Orlando, USA: IEEE, 1988. 110-119.
  • 5Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517-525.
  • 6Carlson N A, Berarducci M P. Federated Kalman filter simulation results. Navigation, 1994, 41(3): 297-321.
  • 7Qiu H Z, Zhang H Y. Algorithm of federated filter with different local and master filter states. In: Proceedings of IFAC Symposium on Automatic Control in Aerospace. Bologna Forli, Italy: IFAC, 2001. 223-228.
  • 8Vershinin Y A. A data fusion algorithm for multisensor system. In: Proceedings of the 5th International Conference on Information Fusion. Annapolis, USA: IEEE, 2002. 341-345.
  • 9Kim Y S, Hong K S. Decentralize information filter in federated form. In: Proceedings of SICE 2003 Annual Conference. Fukui, Japan: IEEE, 2003. 2176-2181.
  • 10Ali J, Fang J C. SINS/ANS/GPS integration using federated Kalman filter based on optimized information-sharing coefficients. In: Proceedings of 2005 AIAA Guidance, Navigation and Control Conference. San Francisco, USA: AIAA, 2005. 1-13.

共引文献56

同被引文献89

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部