期刊文献+

基于传感器参数和感兴趣区域的图像配准算法研究 被引量:2

Research on the Registration Algorithm Based on Sensor Parameters and Region of Interest
原文传递
导出
摘要 通过对光电成像型反舰导弹的成像过程分析,提出一种基于传感器参数和感兴趣区域的图像配准方法。红外和可见光图像配准时的变换模型为仿射变换,首先通过传感器参数的调整实现空间分辨率的配准,将仿射变换简化为刚体变换;然后用海天线提取算法提取出感兴趣区域,对感兴趣区域用形态学边缘检测方法求取目标的轮廓中心,并以此为控制点消除图像间的平移变化,实现图像的完全配准;最后利用均方根误差原则对算法的配准效果进行评估。仿真实验表明,该算法快速、准确,配准精度满足目标识别的要求,可以较好地解决异类传感器弱小目标图像配准的难题。 Based on the analysis of the imaging process of optoelectronic imaging anti-ship missile, an image registration algorithm based on sensor parameters and region of interest (RDI) is proposed. Originally the distortion between infrared and visible images is affine. Firstly, by adjusting sensor parameters, the scaling change between images is eliminated and the affine transform is simplified into rigid transform. Then the ROI is got by locating the horizontal region, and the center of the target's contour is computed by morphological edge detection and chosen as control point, which is used to eliminate the translational change between images and achieve complete alignment. Finally, the registration effect is assessed by using the rule of root mean square error. The simulation experiments convince that the algorithm is accurate and fast, and can meet the precision requirement for target recognition, providing a good way for solving the difficult registration problem of small target images with different sensors.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第1期117-122,共6页 Laser & Optoelectronics Progress
基金 教育部新世纪优秀人才支持计划(NCET-08-0937)资助课题
关键词 成像系统 图像配准 传感器参数 感兴趣区域 形态学 imaging systems image registration sensor parameters region of interest morphology
  • 相关文献

参考文献5

二级参考文献57

  • 1徐东燕,付忠良,阮波.一种基于多结构元的弱对比度图像的边缘检测方法[J].计算机应用,2004,24(6):108-110. 被引量:14
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3崔向群,高必烈,汪达兴,朱永田,杨世海,朱政,王磊,夏自立.一种大口径大非球面度天文镜面磨制新技术[J].光学学报,2005,25(3):402-407. 被引量:23
  • 4Fonseca L. M. G. , Manjunath B. S.. Registration techniques for multisensor remotely sensed imagery[J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(9): 1049-1056.
  • 5Irene G. Ki, Emmanouil Z. P. , Kostas Berberidis et al.. An efficient spatial domain technique for subpixel image registration [J]. Signal Processing : Image Communication, 2008, 23 (9) : 711-724.
  • 6Li H., Manjunath B. S., Mitra S. K.. A contour-based approach to multisensor image registration [ J ]. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 7Ventura A. D. , Rampini A. , Schettini R.. Image registration by recognition of corresponding structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3):305-314.
  • 8Shi W. Z. , Shaker A.. The line-based transformation model (LBTM) for image-to-image registration of high-resolution satellite image data [J ]. International Journal of Remote Sensing, 2006, 27(4).. 3001-3012.
  • 9Zavorin I. , Le Moigne J.. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery[J]. IEEE Transactions on Image Processing, 2005, 14 (6): 770-782.
  • 10Fonseca L. M. G., Costa M. H. M.. Automatic registration of satellite images [ C]. Proceedings Brazilian Symposium on Graphic Computation and Image Processing, Campos de Jordao , Brazil, 1997. 219-226.

共引文献74

同被引文献19

  • 1D Wang, J Zhang. Infrared image edge detection algorithm based on sobel and ant colony algorithm[J]. International Conference on Multimedia Technology, 2011: 4944-4947.
  • 2R J Mullen, D Monekosso, S Barman, et al.. A review of ant algorithms[J]. Expert Systems with Applications, 2009, 36 (6): 9608-9617.
  • 3A Jevtic, D Andina. Adaptive artificial ant colonies for edge detection in digital images[J]. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 2010: 2813-2816.
  • 4J Tian, W Yu, S Xie. An ant colony optimization algorithm for image edge detectionIJ]. IEEE Congress on Evolutionary Computation, 2008: 751-756.
  • 5J Zhang, K He, X Zheng, et al.. An ant colony optimization algorithm for image edge detection[J]. AICI, 2010: 215-219.
  • 6R Fabrizio, L Annarita. Color edge detection in presence of Gaussian noise using nonlinear prefiltering[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1): 352-358.
  • 7于雪莲,田佳峻,姚勇,赵新辉,刘超,孙云旭.基于单幅干涉图的波前重构技术研究[J].光学与光电技术,2010,8(1):39-43. 被引量:3
  • 8张景虎,边振兴.基于蚁群算法的图像边缘检测研究[J].火力与指挥控制,2010,35(2):115-118. 被引量:16
  • 9张健,何坤,郑秀清,周激流.基于蚁群优化的图像边缘检测算法[J].计算机工程,2011,37(17):191-193. 被引量:10
  • 10秦全德,牛奔,李丽,李荣钧.基于Predator-Prey行为的双种群粒子群优化算法[J].信息与控制,2011,40(6):733-739. 被引量:2

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部