期刊文献+

面向功能的Web服务分类系统研究与实现 被引量:2

Research and Implementation of Function-oriented Web Service Classification System
下载PDF
导出
摘要 提出一种基于支持向量机方法依据Web服务的功能信息进行分类的服务分类系统,以UNSPSC作为Web服务的类别体系,并利用UNSPSC中各类别的描述信息作为其父类别的样本文档.在层次化分类体系中利用概念之间的语义层次关系判断出类别的主概念从而进行特征选择的方法,概念之间的语义层次关系通过计算概念在语义词汇网络WordNet中的语义相似度而建立.经过在实际数据和模拟数据集合上进行实验,结果证明服务分类系统分类效果理想. A novel method based on support vector machine is presented to conduct service classification with a medium or big category set.It uses the descriptive information of categories in a large-scale taxonomy as sample data,so as to disengage from the dependence on sample service documents,and the functional information of the new service document is extracted for classification.A new feature selection method using semantic hierarchy relationship between words to determine the main concepts of the category is introduced to enable efficient classification using this new type of sample data.The semantic hierarchy relationship between words is built according to the semantic similarity between words which is calculated by semantic similarity methods based on WordNet.We demonstrate the effectiveness of our classification method through extensive experiments.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第1期46-53,共8页 Journal of Chinese Computer Systems
基金 江苏省自然科学基金项目(BK2010417)资助
关键词 支持向量机 WEB服务 分类 特征选择 WORDNET 语义相似度 support vector machine Web service classification feature selection WordNet semantic similarity
  • 相关文献

参考文献29

  • 1Cnrbera F, Duftler M, Khalaf R, et al. Unraveling the Web serv- ices web : an introduction to SOAP, WSDL, and UDDI [ J ]. Inter- net Computing,2002,6 (2) : 86-93.
  • 2Michelangelo Ceci, Donato Malerba. Classifying web documents in a hierarchy of categories: a comprehensive study [ J]. Intell. Inf. Syst,2007,28( 1 ) :37-78.
  • 3Thorsten Joachims. Text categorization with support vector ma- chines: learning with many relevant features [C]. In Machine Learning : ECML-98, Chemnitz Germany : Springer, 1998 : 137-142.
  • 4Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta. An ap- proach to support Web service classification and annotation [ C [. The 2005 IEEE International Conference on e-Technology, e-Com- merce and e-Service. Benevento, Italy: IEEE Computer Society, 2005 : 138-143.
  • 5Ioannis Katakis, Georgios Meditskos, Grigorios Tsoumakas, et al. On the combination of textual and semantic descriptions for automa- ted semantic web service classification [J]. AICT, 2009, 296 (296) :95-104.
  • 6Miguel Angel Corella, Pablo Castells P. A heuristic approach to se- mantic web services classification [ C]. In Proceedings of the 10th International Conference on Knowledge-Based & Intelligent Infor- mation & Engineering Systems, United Kingdom : Springer-Verlag, 2006:598-605.
  • 7U.S. Economic Classification Policy Committee (ECPC), Statis- tics Canada , Mexico's Instituto Nacional de Estadistica y Geogra- fla. North american industry classification system [ EB/OL ]. ht- tp ://www. census, gov/eos/www/naics/,2011.
  • 8Salton G. The SMART retrieval system: experiments in automatic document processing [ M]. NJ, USA:Prentence Hall, 1971.
  • 9Kenneth Ward Church, Patrick Hanks. Word association norms, mu- tual information, and lexicography [ J ]. Computational Linguistics, 1990,16( 1 ) :22-29.
  • 10Fan Xing-hua, Hu Hong-ge. A new model for Chinese short-text classification considering feature extension [ C]. Proceedings of International Conference on Artificial Intelligence and Computa- tional Intelligence,2010:7-11.

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部