期刊文献+

一种基于压缩感知的高分辨率宽测绘带合成孔径雷达成像算法 被引量:2

HRWS SAR Imaging Based on Compressed Sensing
下载PDF
导出
摘要 针对高分辨率宽测绘带合成孔径雷达(High Resolution Wide Swath Synthetic Aperture Radar,HRWSSAR)在俯仰向波束形成受地面目标高程影响造成增益损失以及在方位向非均匀采样造成模糊的问题,文中提出了一种基于压缩感知(Compressed Sensing,CS)技术的HRWS SAR成像算法。根据SAR系统和平台参数建立精确的观测模型后,通过求解1优化问题直接准确地估计出了在地面高程变化影响下的目标来波方向(Direction ofArrival,DOA)并重建了非均匀采样下的方位向观测场景,从而实现了HRWS SAR在俯仰向和方位向的非模糊成像。仿真结果表明了本文算法的有效性。 Compressed Sensing(CS) is introduced into High Resolution Wide Swath Synthetic Aperture Radar(HRWS SAR) imaging.In the HRWS SAR system,a small antenna for transmitting waveform and multiple antennas both in range and azimuth for receiving echoes is used.The data of multiple elevation antennas after range compression are used to estimate direction of arrival of targets via CS,and the adaptive beamforming in elevation is achieved accordingly,thus avoiding the gain loss of Scan-on-Receive(SCORE) algorithm in the presence of topographic height change.The effective phase centers of the system are nonuniformly distributed,which cause Doppler ambiguities under traditional SAR imaging algorithms.Azimuth reconstruction based on CS can resolve this problem via precisely modeling the nonuniform sampling.
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第1期106-112,共7页 Journal of Astronautics
基金 863项目(2012AA121305) 973项目(2010CB731905)
关键词 合成孔径雷达 高分辨率宽测绘带 压缩感知 来波方向 多普勒模糊 SAR High resolution wide swath(HRWS) Compressed sensing Direction of arrival Doppler ambiguity
  • 相关文献

参考文献14

  • 1Currie A, Brown M A. Wide-swath SAR[J]. IEE Proceedings of Radar, Sonar and Navigation,1992,139(2) : 122 - 135.
  • 2Krieger G, Younis M, Gebert N, et al. Advanced concepts for high-resolution wide-swath SAR imaging [ C ]. EUSAR2010, Aachen, Germany Jun 2010.
  • 3Suess M, Wiesbeck W. Side-looking synthetic aperture radar system: US, 6870500[P]. 2005 -03-22.
  • 4Fischer C, Heer C, Krieger G, et al. A high resolution wide swath SAR[C]. EUSAR2006, Dresden, Germany, May 2006.
  • 5Bordoni F, Younis M, Varona E M, et al. Performance investigation on scan-on-receive and adaptive digital beam- forming for high-resolution wide-swath synthetic aperture radar [ C]. WSA2009, Berlin, Germany, Feb 2009 : 114 - 121.
  • 6Krieger G, Gebert N, Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling [ J ]. IEEE Geoscience Remote Sensing Letters, 2004, 1 (4) : 260 - 264.
  • 7Gebert N, Krieger G, Moreira A. Digital beamforming on receive: technique and optimization strategies for high-resolution wide-swath SAR imaging [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2) : 564 -592.
  • 8Donoho D. Compressed sensing[ J 1- IEEE Transactions on Infonnation Theory, 2006, 52(4) : 5406 -5425.
  • 9Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information E J 3. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509.
  • 10Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging[ J ]. Proceedings of the IEEE, 2010, 98(6) : 1006 -1020.

二级参考文献7

  • 1屠亚兰.非均匀采样信号重构技术及其在PD雷达HPRF信号处理中的应用[J].现代雷达,1997,19(2):84-87. 被引量:3
  • 2Curlander J C,McDonough R N.Synthetic Aperture Radar:Systems and Signal Processing.New York:Wiley,1991:20-21.
  • 3Currie A,Brown M A.Wide-swath SAR.IEE Proc-F,1992,139(2):122-135.
  • 4Meisl P,Thompson A,Luscombe A.RADARSAT-2 Mission:Overview and development status,EUSAR 2000,Munich,2000,5:373-376.
  • 5House M G,Mountcastle P D.Technique for frequency analysis of unevenly sampled radar data.IEEE Radar Conference,California,2002,4,63-67.
  • 6Yen J L.On nonuniform sampling of bandwidth-limited signals.IRE Trans.on Circuit Theory,1956,3(4):251-257.
  • 7GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001..

共引文献10

同被引文献23

  • 1Zhou Y F, Patrick C Y, Henry L. Tracking the direction-of- arrival of multiple moving targets by passive arrays: algorithm [ J]. IEEE Transactions on Signal Processing, 1999, 47 (10) : 2655 - 2666.
  • 2Ryu M, Toyohisa T, Akio H, et al. A DBF self-beam steering array antenna for mobile satellite applications using beaming- space maximal-ratio combination [ J ]. IEEE Transactions on Vehicular Technology, 1999, 48 (3) : 665 - 675.
  • 3James H G. High-frequency direction finding in space [ J ]. Review of Scientific Instruments, 2003, 74 (7) : 3478 - 3486.
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 ( 2 ) : 489 - 509.
  • 5Dmitry M, Mujdat C, Alan S W. A sparse signal reconstruction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Processing, 2005, 53 (8) : 3010 -3022.
  • 6Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3) : 1754 -1769.
  • 7Yu Y, Petropulu A P, Poor H V. MIMO radar using compressive sampling [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4( 1 ) : 146 - 163.
  • 8Belfiori F, Anitori L, Rossum W V, et al. Digital beam forming and compressive sensing based DOA estimation in MIMO arrays [C]. The 8th European Radar Conference, Manchester, UK, October 12 - 14, 2011.
  • 9Kim L O, Ye J. Compressive music: revisiting the link between compressive sensing and array signal processing [J]. IEEE Transactions on Information Theory, 2012, 58 (1) : 278 -301.
  • 10Herman M, Strohmer T. General deviants: an analysis of perturbations in compressive sensing [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2) : 342 - 349.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部