期刊文献+

体域网中一种基于压缩感知的人体动作识别方法 被引量:26

Recognition of Human Activity Based on Compressed Sensing in Body Sensor Networks
下载PDF
导出
摘要 能量有效性是无线体域网在面向长时间健康监测应用的首要挑战。该文引入压缩感知和稀疏表示理论同时解决人体活动监测中的动作识别和数据压缩问题,探索在达到一定动作识别率的同时降低传感器节点的能耗。该文提出的压缩分类动作识别方法首先在传感器节点利用随机投影对传感数据进行压缩,传到中心节点后再利用稀疏表示对压缩采样数据进行分类与识别,可减少传感器节点处理、传输原始数据所带来的能耗。在公开的可穿戴式传感器动作识别数据库WARD(Wearable Action Recognition Database)验证算法性能,实验结果表明该动作识别方法能有效地对随机投影后的低维采样数据进行识别,具有与传统识别方法相比拟的动作识别准确率。 Energy efficiency is a primary challenge in wireless body sensor networks for the long-term physical movement monitoring. In order to reduce the energy consumption while maintaining the sufficient classificationaccuracy of the human activity, a compressed classification approach is explored combining classification with data compressing based on sparse representation and compressed sensing. The proposed approach firstly compresses thesensing data by random projection on the sensor nodes, and then recognizes activities on compressed samples after transmitting to the central node by sparse representation, which can reduce the energy transmission of originaldata. The performance of the method is evaluated on the opened Wearable Action Recognition Database (WARD). Experimental results are validated that the compressed classifier achieves comparable recognition accuracy on thecompressed sensing data.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第1期119-125,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61173036 61173012)资助课题
关键词 无线体域网 压缩感知 动作识别 微惯性传感器 能量有效 Wireless Body Sensor Networks (WBSN) Compressive Energy efficiency sensing Activity recognition Inertial sensors
  • 相关文献

参考文献18

  • 1宫继兵,王睿,崔莉.体域网BSN的研究进展及面临的挑战[J].计算机研究与发展,2010,47(5):737-753. 被引量:57
  • 2Ghasemzadeh H and Jafari R. Physical movement monitoring using body sensor networks:a phonological approach to construct spatial decision tress[J].IEEE Transactions on Industrial Informatics,2011,(01):66-77.
  • 3Wang Z L,Jiang M,Hu Y H. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for huaman activity recognition by using wearable sensors[J].{H}IEEE Transactions on Information Technology in Biomedicine,2012,(04):691-699.
  • 4Mi Z;Alexander A S.A feature selection-based framework for human activity recognition using wearable multimodal sensor[A]{H}北京,2011201-208.
  • 5Wang L,Gu T,Tao X P. A hierarchical approach to real-time activity recognition in body sensor networks[J].Journal of Pervasive and Mobile Computing,2012,(01):115-130.
  • 6Cheng L,Hailes S,Chen Z. Compressed Inertial motion data in wireless sensing systems-an initial experiment[A].{H}Washington,D.C,2008.293-296.
  • 7Wu C H and Tseng Y C. Data compression by temporal and spatial correlations in a body-area sensor network:a case study in pilates motion recognition[J].IEEE Transactions on Mobile Computing,2011,(10):1459-1472.
  • 8Ghasemzadeh H and Guenterberg E. Energy-efficient information driven coverage for physical movement monitoring in body sensor networks[J].{H}IEEE Journal on Selected Areas in Communications,2009,(01):58-69.
  • 9Ghasemzadeh H,Loseu V,and Jafari R. Structural action recognition in body sensor networks:distributed classification based on string matching[J].{H}IEEE Transactions on Information Technology in Biomedicine,2010,(02):425-435.
  • 10Yang Y,Jafari R,Shankar S. Distributed recognition of human actions using wearable motion sensor networks[J].Journal of Ambient Intelligence and Smart Environments,2009,(02):1-5.

二级参考文献5

共引文献56

同被引文献220

  • 1洪锋,褚红伟,金宗科,单体江,郭忠文.无线传感器网络应用系统最新进展综述[J].计算机研究与发展,2010,47(S2):81-87. 被引量:76
  • 2张洁.基于加速度传感器的人体运动行为识别研究[J].自动化与仪器仪表,2016(3):228-229. 被引量:16
  • 3白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 4王丽娜,施德军,覃伯平,周贤伟.基于Merkle散列树的无线传感器网络实体认证协议[J].传感技术学报,2007,20(6):1338-1343. 被引量:5
  • 5Pantelopoulos A, Bourbakis N.A survey on wearable sensor- based systems for health monitoring and prognosis[J].IEEE Transactions on Systems, Man, and Cybernetics: Part C Applications and Reviews,2010,40(1) : 1-12.
  • 6Bourke A,Lyons G.A threshold-based fall-detection algorithm using a hi-axial gyroscope sensor[J].Medical Engi- neering and Physics, 2008,30( 1 ) : 84-90.
  • 7Amft O, Junker H, Troster G.Detection of eating and drinking arm gestures using inertial body-wom sensors[C]// Proceedings of the 9th IEEE International Symposium on Wearable Computers, 2005 : 160-163.
  • 8Lau H, Tong K.The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot[J],Gait and Posture, 2008,27(2) : 248-257.
  • 9Albinali F, Intille S, Haskell W, et al.Using wearable activity type detection to improve physical activity energy expenditure estimation[C]//Proceedings of the 12th ACM International Conference on Ubiquitous Computing.[S.l.]: ACM,2010:311-320.
  • 10Pansiot J, Lo B, Yang G.Swimming stroke kinematic analysis with BSN[C]//Proceedings of 2010 International Conference on Body Sensor Networks(BSN).[S.l.]:IEEE, 2010: 153-158.

引证文献26

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部