期刊文献+

关于平面卵形区域的等周亏格上界的几点注记 被引量:1

Some Remarks on the Isoperimetric Deficit Upper Bounds of the Plane Oval Domain
原文传递
导出
摘要 利用平面卵形区域的Ros'定理及其加强形式,给出平面R^2中卵形区域的等周亏格的几个上界估计. Based on Ros' theorem and strengthen forms of the oval domain, we obtain some upper bounds of the isoperimetric deficit of the plane oval domain.
作者 戴勇 姚惠
出处 《数学的实践与认识》 CSCD 北大核心 2013年第1期188-191,共4页 Mathematics in Practice and Theory
基金 西南大学访学基金 黔南民族师范学院科研项目(QNSY0906)
关键词 等周不等式 等周亏格 Ros’定理 卵形区域 isoperimetric inequality isoperimetric deficit Ros' theorem oval domain
  • 相关文献

参考文献12

  • 1Burago Y,Zalgaller V,Zalgaller V. Geometric Inequalities[M].Beilin:Springer-Verlag,1988.
  • 2Do Carmo M. Differential Geometry of Curves and Surface[M].New Jersey:Princeton-Hall,Inc,1976.
  • 3Osserman R. Convature in the eighties[J].American Mathematical Monthly,1990,(08):731-756.
  • 4Ren D. Topics in Integral Geometry[M].Singapore:World Scientific Publishing Co.Ptc.Ltd,1994.
  • 5Ros A. Compact hypersurfase with constant scalar curvature and a congruence theorem,(With an appendix by Nicholas J.Korevaar)[J].Journal of Differential Geometry,1988,(02):215-220.
  • 6Santoló L. Integral Geomtry and Geomtric Probiliy[M].MA:Addison-Wesley,1976.119-124.
  • 7Pan S,Yang J. On a non-local perimeter-preserving curve evolution problem for convex plane curves[J].Manuscripta Mathmatica,2008,(04):469-484.
  • 8Zhou J,Chen F. The Bonnesen-type inequalities in a plane of constant curvature[J].Journal of Korean Math Soc,2007,(06):1363-1372.
  • 9Zhou J. Curvature inequalities for curves[J].Inter Comp Math Sci Appl,2007,(2-4):145-147.
  • 10周家足.平面Bonnesen型不等式[J].数学学报(中文版),2007,50(6):1397-1402. 被引量:33

二级参考文献43

  • 1Burago Y. D., Zalgaller V. A., Geometric Inequalities, New York: Springer-Verlag, 1988.
  • 2Zhou J., On the Willmore deficit of convex surfaces, Lectures in Appl. Math. of Amer. Math. Soc., 1994, 8: 279-287.
  • 3Zhou J., On Willmore inequalities for submanifolds, Canadian Mathematical Bulletin, 2007, 50(3): 474-480.
  • 4Zhou J., The Willmore functional and the containment problem in R^4, Science in China Series A: Mathematics, 2007, 50(3): 325-333.
  • 5Zhou J., On Bonnesen-Type inequalities, Acta Mathematiea Siniea, Chinese Series, 2006, 50(6): 1397-1402.
  • 6Zhou J., Chen F., The Bonnesen-type inequalities in a plane of constant curvature, Jouunal of Korean Math. Seo., 2007, 44(6): 1363-1372.
  • 7Zhou J., New curvature inequalities for curves, Inter. J. of Math., Comp. Sci. & Appl., 2007, 1(1/2): 145-147.
  • 8Zhang G., Zhou J., Containment Measures in Integral Geometry, Integral Geometry and Convexity, Singapore: World Scientific, 2005.
  • 9Montiel S., Ros A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvature, Diff. Geom., Pitman Monogr Surveys Pure Appl. Math., Longman Sci. Tech, Harlow, 1991, 52: 279-296.
  • 10Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8): 731-756.

共引文献56

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部