摘要
图G的一个k-正常边染色f被称为点可区别边染色是指任何两点的点及其关联边的色集合不同,所用最小的正整数k被称为G的点可区别边色数,记为X'_(vd)(G).用k_(2n)-E(C_m)表示2n阶完全图删去其中一条m阶路的边后得到的图,得到了K_(14)-E(C_4),K_(16)-E(C_4),K_(18)-E(C_5),K_(20)-E(C_5)的点可区别边色数分别为14,16,18,20.
let G(V, E) be a connected graph. A k-proper edge coloring f of G(V, E) is said to be a k-vertex-distinguishing edge coloring iff C(u)≠ C(v) for u, v∈ V(G), u≠ v, where C(u) = {f(uv)|uv ∈ E(G)}. And the minimum integer k is called the vertex-distinguishing edge chromatic number of G(V, E),denoted by xvd(G). In this paper, we obtain the vertex- distinguishing edge chromatic number of K14 - E(C4), K16 - E(C4), K18 - E(Ch), K20 - E(C5) being 14,16,18,20 respectively, where K2n - E(Cm) denotes the complete graph with order 2n deleted m edges of a Cycle with order m in K2n.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第1期205-211,共7页
Mathematics in Practice and Theory
关键词
图的点可区别边染色
图的点可区别边色数
vertex-distinguishing edge coloring
vertex-distinguishing edge chromatic number