期刊文献+

具有趋化性的非线性系统的解的爆破性态分析

Norm Behavior Of Solutions to a Parabolic-Elliptic System Modeling Chemotaxis in R2
原文传递
导出
摘要 讨论了一个非线性的抛物-椭圆系统,而该系统来源于生物数学中的一个趋化性模型.主要在Sobolev空间的框架下讨论了系统解的爆破性质,得出结论在二维空间中该系统存在一个门槛值,而该值决定了解全局存在或者是发生爆破.最后利用利亚普诺夫函数、下解爆破等方法给出了定理的证明并得出结论. We studied a nonlinear parabolic-elliptic system defined On a domain of R2 which comes from a chemotactic system in Biology. We proved the blow up solution of solutions to this problem in Sobolev spaces framework. Next we have the conclusion that there is a critical number which determines the occurrence of blow-up case. Finally, we gave the proof of the theorem with the help of Lyapunov function.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第1期255-260,共6页 Mathematics in Practice and Theory
基金 河南省教育厅基金(2011C110005)
关键词 非线性趋化性系统 Keller—Segel模型 利亚普诺夫函数 解的爆破 nonlinear chemotaxis system Keller-Segel model Lyapunov function blow up oflower solutions
  • 相关文献

参考文献9

  • 1李燕,牟伯中.细菌趋化性研究进展[J].应用与环境生物学报,2006,12(1):135-139. 被引量:17
  • 2Keller EF,Segel LA. Initiation of slime mold aggregation viewed as an instability[J].Journal of Theoretical Biology,1970.399-415.
  • 3Chilldress S,Percus JK. Nonlinear aspects of chemotaxi[J].Mathematical Biosciences,1981.217-237.
  • 4Nagai T. Blow up of radially symmetric solutions to a chemotaxis system[J].Advances in Mathematical Sciences and Applications,1995.581-601.
  • 5Nagai T. Blow up of nonradially symmetric solutions to parabolic-elliptic systems modelling chemotaxis in 2-dimension domains[J].Journal of Differential Equations,2001.37-55.
  • 6Nagai T. Behavior of solutions to a parabolic-elliptic system modelling chemotaxis[J].Journal of Korean Math Soc,2000.721-733.
  • 7Sabine Hittmir,Ansgar J.Ungel. Cross difusion preventing blow up in the two-dimensional kellersegel model[J].Journal on Mathematical Analysis,2011.1-27.
  • 8Piotr Biler,Grzegorz Karch. Blow up of solutions to generalized keller-segel model[J].Journal of Evolution Equations,2010.247-262.
  • 9Yan Guo,Hyung Ju Hwang. Pattern formation(Ⅰ):The Keller-Segel model[J].Journal of Differential Equations,2010,(07):1519-1530.

二级参考文献55

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部