期刊文献+

基于独立特征融合的面部疲劳状态识别

Dynamic Facial Fatigue Recognition Based on Independent Features Fusion
下载PDF
导出
摘要 为提高面部疲劳状态的识别效果,提出了一种融合全局特征和局部特征的面部疲劳特征表示方法.该方法将离散余弦变换(discrete cosine transform,DCT)和独立元分析(independent component analysis,ICA)技术以及Gabor变换相结合,通过融合全局独立DCT特征和局部动态Gabor特征得到最终的面部疲劳特征表示.基于前人自建的疲劳图像序列库进行了实验,结果表明该方法提取的疲劳特征更加具有鉴别力. To improve the facial fatigue state recognition effect, a facial fatigue features representation method of fusing the global and local features was proposed. This method combined the discrete cosine transform (DCT), independent component analysis (ICA) technology and Gabor transformation, and obtained the final facial fatigue features representation through fusing the global independent DCT features and local dynamic Gabor features. The experiments based on the previous self-built fatigue image sequences show that the fatigue features extracted by this method are more discriminative.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第1期63-69,共7页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(60973057)
关键词 疲劳分析 特征融合 离散余弦变换 独立元分析 GABOR小波 fatigue analysis features fusion discrete cosine transform (DCT) independent component analysis (ICA) Gabor wavelet
  • 相关文献

参考文献12

  • 1张志斌,杨玉珍,陈阳舟.基于计算机视觉的驾驶员疲劳实时检测研究[D].北京:北京工业大学计算机学院,2008.
  • 2BASSILI J. Emotion recognition: the role of facialmovement and the relative importance of upper and lowerareas of the face [ J]. Personality and Social Psychology,1979, 37: 2049-2059.
  • 3COHEN I,SEBE N, GARG A, et al. Facial expressionrecognition from video sequences : temporal and staticmodeling[ J] . Computer Vision and Image Understanding,2003, 91 : 160-187.
  • 4HAFED Z M, LEVINE M D. Face recognition using thediseretecosine transform [ J]. International of ComputerVision, 2001 , 43(3) : 167-188.
  • 5HONG Z Q. Algebraic feature extraction of imagerecognition [ J]. Pattern Recognition, 1991,24(3): 211-219.
  • 6TURK M A, PENTLAND A P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience,1991,3(1) :71-86.
  • 7LIU C J,WECHSLER H. Independent component analysisNeural Networks, 2003,14(4) : 919-928.
  • 8杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 9叶伊松,武妍.基于ICA和NFL分类的局部人脸识别方法[J].中国图象图形学报(A辑),2005,10(4):468-472. 被引量:6
  • 10WANG R, GUO J, TONG B L,et al. Monitoring mouthmovement for driver fatigue or distraction with one camera[C] // The 7th International IEEE Conference onIntelligent Transportation Systems. Washington, D. C:,IEEE Intelligent Transportation Systems Society,2004 :314-319.

二级参考文献19

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3边肇棋 张学工.模式识别[M].北京:清华大学出版社,2002.230-248.
  • 4Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by ICA[J]. IEEE Transactions on Neural Networks, 2002,13(6) : 1450 -1463.
  • 5Comon P. Independent components of analysis -a new concept[J]. Signal Processing, 1994,36 ( 3 ) : 287 - 314.
  • 6斯华龄 张立明.智能视觉图像处理-多通道图像的无监督学习方法及其他方法[M].上海:科技教育出版社,2002.200-204.
  • 7Girolami M. Advances in independent component analysis [ M ].Berlin, Germany: Springer-Verlag, 2000.
  • 8Hyvarinen A. Fast and robust fixed-point algorithm for independent component analysis [ J]. IEEE Transactions on Neural Networks,1999,10(3) : 626 -634.
  • 9Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind disconsolation [ J ]. Neural Computer,1995,7(6) : 1129 - 1159.
  • 10Wang L, Tan T K. Experimental results of face description based on the 2^nd-order eigenface method [ R]. ISO/IEC JTC1/SC21/WG11 M6001, Geneva, May 2000.

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部