期刊文献+

基于中心差分卡尔曼-概率假设密度滤波的多目标跟踪方法 被引量:6

Central difference Kalman-probability hypothesis density filter for multitarget tracking
原文传递
导出
摘要 针对非线性系统模型,提出一种基于中心差分卡尔曼-概率假设密度滤波的多目标跟踪方法.该方法采用Stirling内插公式对非线性函数作多项式逼近,利用中心差分卡尔曼滤波和高斯混合概率假设密度滤波对后验多目标状态一阶统计量进行估计,并通过递推更新得到目标状态,以实现对多个目标的跟踪.该方法无需求解系统函数的雅可比矩阵,且具有二阶泰勒展开式精度.仿真结果表明,所提出方法能够增强算法的鲁棒性,提高目标状态和数目的估计精度. Aiming at the nonlinear system model, a central difference Kalman-probability hypothesis density filter is proposed to track multiple targets. Multi-target tracking is fulfilled by deriving polynomial approximations with Stifling interpolation formulas., estimating first-order statistical moment of posterior multi-target states with central difference Kalman filter and Gaussian mixture probability hypothesis density filter, and extracting targets' states from the recursion of probability hypothesis density. The advantage of proposed filter is mainly that Jacobian matrix solving is unnecessary and second-order Taylor expansion accuracy can be ensured. Simulation results show that the robustness of the algorithm is enhanced, and the estimating accuracy of the number and states of the targets are improved.
出处 《控制与决策》 EI CSCD 北大核心 2013年第1期36-42,48,共8页 Control and Decision
基金 国家自然科学基金项目(61172110 61172107 60772161 60372082) 高等学校博士点专项科研基金项目(200801410015)
关键词 多目标跟踪 概率假设密度滤波 卡尔曼滤波 中心差分 非线性系统 multi-target tracking probability hypothesis density filter~ Kalman filter central difference nonlinearsystem
  • 相关文献

参考文献18

  • 1Pantrigo J J, Hem~ndez J, S(mchez A. Multiple and variable target visual tracking for video-surveillanceapplications[J]. Pattern Recognition Letters, 2010, 31(12): 1577-1590.
  • 2Lundquist C, Hammarstrand L, Gustafsson F. Road intensity based mapping using radar measurements with a probability hypothesis density filter[J]. IEEE Trans on Signal Processing, 2011, 59(4): 1397-1408.
  • 3Yilmaz A, Javed O, Shah M. Object tracldng: A survey[J]. ACM Computing Surveys, 2006, 38(4): 1-45.
  • 4Sen S, Nehorai A. Sparsity-based multi-target tracking using OFDM radar[J]. IEEE Trans on Signal Processing, 2011, 59(4): 1902-1906.
  • 5Rasmussen C, Hager G D. Probabilistic data association methods for tracking complex visual objects[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6): 560-576.
  • 6Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
  • 7Palkki R D, Lanterman A D, Blair W D. Addressing track hypothesis coalescence in sequential K-best multiple hypothesis tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2011, 47(3): 1551-1563.
  • 8Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 9Mahler R. A theoretical foundation for the Stein- Winter "probability hyphthesis density (PHD)" multitarget tracking approach[C]. Proc of the MSS National Symposium on Sensor and Data Fusion. San Antonio: Sci and Secret, 2000:99-118.
  • 10Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Trans on Signal Processing, 2006, 54(11): 4014-4091.

二级参考文献1

共引文献13

同被引文献55

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部