期刊文献+

均衡分布性与收敛性的协同进化多目标优化算法 被引量:11

Co-evolutionary multi-objective optimization algorithm with balanced diversity and convergence
原文传递
导出
摘要 为了进一步提升多目标进化算法(MOEAs)的收敛速度和解集分布性,针对变量无关问题,借助合作型协同进化模型,提出一种均衡分布性与收敛性的协同进化多目标优化算法(CMOA-BDC).CMOA-BDC首先设置一个精英集合,采用支配关系从进化种群与精英集合中选择首层,并用拥挤距离保持其分布性;然后运用聚类将首层分类,并建立相应概率模型;最后通过模拟退火组合分布估计与遗传进化,达到协同进化.通过与经典MOEAs比较的结果表明,CMOA-BDC获得的解集具有更好的收敛性和分布性. To further improve the diversity and convergence rate of the existed multi-objective evolutionary algorithms, a co-evolutionary multi-objective optimization algorithm with balanced diversity and convergence(CMOA-BDC) is proposed specific to the dependency-free multi-objective optimization problems through integrating the cooperative co-evolutionary model. Firstly, CMOA-BDC sets an elitism set, employs the simple dominant relationship to search the first non-dominant layer in the evolutionary population and the elitism set, and adopts crowding distance to keep the diversity of the first non- dominant layer. Then cluster analysis is used to divide the first non-dominant layer into multiple class, and the probability model is established. Finally, a co-evolutionary method is realized by using simulated annealing to integrate the estimation of distribution and genetic evolution. In comparison with the classical MOEAS, the experimental results show that the algorithm has better outcomes in both convergence and diversity.
出处 《控制与决策》 EI CSCD 北大核心 2013年第1期55-60,共6页 Control and Decision
基金 中国博士后科学基金项目(20080431114 20100471350)
关键词 多目标优化 协同进化 分布估计算法 多概率模型 multi-objective optimization co-evolutionary estimation of distribution algorithms: multi-probabilitymodel
  • 相关文献

参考文献17

  • 1Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm for multi-objective optimization[C]. Proc of the 1st IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 1994: 82-87.
  • 2Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chicester: John Wiley & Sons, 2001.
  • 3Erickson M, Mayer A, Horn J. The niched pareto genetic algorithm applied to the design of groundwater remediation systems[C]. The 1st Int Con on Evolutionary Multi- Criterion Optimization. Zurich, 2001: 681-695.
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 5Hajek J, Szollos A, Sistek J. A new mechanism for maintaining diversity of Pareto archive in multiobjec-tive optimization[J]. Advances in Engineering Software, 2010, 41(7): 1031-1057.
  • 6文诗华,郑金华.NSGA-II中一种改进的分布性保持策略[J].计算机工程与应用,2010,46(33):49-53. 被引量:9
  • 7林浒,彭勇.面向多目标优化的适应度共享免疫克隆算法[J].控制理论与应用,2011,28(2):206-214. 被引量:11
  • 8Geng H T, Zhang M, Huang L, et al. Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization[C]. Proc of SEAL06. Berlin: Springer-Verlag, 2006: 336-344.
  • 9Geng H T, Song Q X, Wu T T, et al. A multi-objective constrained optimization algorithm based on infeasibleindividual stochastic binary-modification[C]. Proc of 2009 IEEE Int Conf on Intelligent Computing and Intelligent Systems. Shanghai, 2009: 89-93.
  • 10Mitchell A Potter, Kenneth A De Jong. A cooperative coevolutionary approach to function optimization[C]. Proc of Parallel Problem Solving From Nature HI. Berlin: Springer-Verlag, 1995: 249-257.

二级参考文献132

  • 1黄敏,陈国龙,郭文忠.基于表现型共享的多目标粒子群算法研究[J].福州大学学报(自然科学版),2007,35(3):365-369. 被引量:5
  • 2Zitzler E,Thiele L.Multi-objective evolutionary algorithms:A comparative case study and the strength pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 3Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm,TIK2Report 103[R].2001.
  • 4Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
  • 5Deb K,Agrawal S,Pratab A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGAII,KanGAL Report 200001[R].Indian Institute of Technology,Kanpur,India,2000.
  • 6Come D W,Knowles J D,Oates M J.The Pareto envelope-based selection algorithm for multiobjective optimization[C] //Schoenauer M,Deb K,Rudolph G,et al.Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference.New York:Springer,2000:839-848.
  • 7Come D W,Jerram N R,Knowles J D,et al.PESA-Ⅱ:Region-based selection in evolutionary multiobjective optimization[C] //Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2001).[S.l.] :Morgan Kaufmann Publishers,2001:283-290.
  • 8Deb K.Multi-objective optimization using evolutionary algorithmgs[M].Chichester,UK:John Wiley & Sons,2001.
  • 9Deb K,Mohan M,Mishra S.A fast multi-objective evolutionary algorithm for finding well-spread Parcto-optimal solutions,KanGAL Report No 2003002[R].2003.
  • 10Li Mi-qing,Zheng Jin-hua.Spread assessment for evolutionary multiobjective optimization[C] //5th International Conference on Evolutionary Multi-Criterion Optimization(EMO 2009),Nantes,France,2009:216-230.

共引文献226

同被引文献202

引证文献11

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部