期刊文献+

分布阶次系统时域子空间辨识 被引量:2

Subspace identification of distributed order systems in time-domain
原文传递
导出
摘要 研究线性时不变分布阶次系统的时域辨识问题,提出一种基于主元分析的子空间辨识算法.该算法采用分数阶滤波器重构基本输入输出方程,利用主元分析辨识分布阶次系统的各项系数矩阵,通过代价函数将系统的各项分数阶微分阶次辨识问题转化为多变量参数优化问题,设计了辅助变量消除辨识过程中随机噪声的不利影响.数值仿真实例表明了算法的有效性. The.problem of the identification of linear time invariant(LTI) distributed order systems in time-domain is firstly discussed, and a subspace identification algorithm based on principle component analysis(PCA) is proposed. The fractional order filter is designed to reconstruct the basic input and output equation. The principle component analysis is used to identify coefficient matrixes of distributed order systems. The cost function is utilized to transform the identification of fractional differential orders into multivariable optimization problem. An instrumental variable is chosen to eliminate the bad influence of random noises during the identification process. A numerical example is given to show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第1期67-72,共6页 Control and Decision
基金 国家自然科学基金项目(61004017 60974103)
关键词 分布阶次系统 子空间方法 主元分析 系统辨识 distributed order systems, subspace method principle component analysis system identification
  • 相关文献

参考文献21

  • 1Das S. Functional fractional calculus for system identification and controls[M]. Berlin: Springer, 2008: 1-2.
  • 2Podlubny I. Fractional differential equations[M]. San Diego: Acdamic Press, 1999: 261-307.
  • 3Chen Y Q, Vinagre B M, Xue D, Feliu V. Fractional-order systems and controls: Fundamentals and applications[M]. London: Springer, 2010: 259-309.
  • 4Caponetto R, Dongola G, Fortuna L. Fractional order systems: Modeling and control applications[M]. Singapore: World Scientific Publishing, 2010: 127-139.
  • 5Lorenzo C E Hartley T T. Variable order and distributed order fractional operators[J]. Nonlinear Dynamics, 2002, 29(1-4): 57-98.
  • 6Caputo M. Mean fractional-order-derivatives differential equations and filters[J]. Annali Dell'Universita di Ferrara, 1995, 41(I): 73-84.
  • 7Kochubei A N. Distributed order calculus and equations of ultra slow diffusion[J]. J of Mathematical Analysis and Applications, 2008, 340(1): 252-281.
  • 8Umarov S, Steinberg S. Random walk models associated with distributed fractional order differential equations[J]. Lecture Notes-Monograph Series, 2006, 51: 117-127.
  • 9Li Y, Sheng H, Chen Y Q. On distributed order integrator/differentiator[J]. Signal Processing, 2010, 91(5): 1079-1084.
  • 10Jiao Z, Chen Y Q, Zhong Y S. Stability of fractional- order linear time-invariant system with orders[J]. Computers and Mathematics 2011,10: 1016. with Applicatims,.

同被引文献30

  • 1向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用,2007,24(1):143-147. 被引量:25
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:164
  • 3Caponetto R,Dongola G,Fortuna L,et al.Fractional order systems:modeling and control applications[M].Singapore:World Scientific,2010.
  • 4Podlubny I.Fractional-order systems and PIλDμ-controllers[J].IEEE Trans Automatic Control,1999,44(1):208-218.
  • 5Chen Yangquan,Bhaskaran T,Xue Dingyu.Practical tuning rule development for fractional order proportional and integral controllers[J].Journal of Computational and Nonlinear Dynamics,2008,3(2):0214031-0214038.
  • 6Monje C A,Vinagre B M,Feliu V,et al.Tuning and auto-tuning of fractional order controllers for industry applications[J].Control Engineering Practice,2008,16(7):798-812.
  • 7Li Hongsheng,Luo Ying,Chen Yangquan.A fractional order proportional and derivative(FOPD)motion controller:tuning rule and experiments[J].IEEE Transactions on Control Systems Technology,2010,18(2):516-520.
  • 8Luo Ying,Chen Yangquan.Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems[J].Automatica,2012,48(9):2159-2167.
  • 9Das S,Pan I,Das S,et al.Improved model reduction and tuning of fractional-order PIλDμcontrollers for analytical rule extraction with genetic programming[J].ISA Transactions,2012,51(2):237-261.
  • 10Wang Dejin,Gao Xueli.H∞design with fractionalorder PDμcontrollers[J].Automatica,2012,48(5):974-977.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部