期刊文献+

基于混合KPLS-FDA的过程监控和质量预报方法 被引量:3

Process monitoring and quality prediction method based on hybrid KPLS-FDA
原文传递
导出
摘要 提出一种基于核偏最小二乘(KPLS)与费舍尔判别分析(FDA)相结合的过程监控和质量预报方法—–混合KPLS-FDA方法.首先,利用KPLS提取过程数据的非线性特征,使用FDA建立KPLS的内部模型;然后,求出满足最大分离度的核Fisher特征向量和判别向量来实现状态监测,若系统运行正常,则根据KPLS回归模型预报产品的质量,否则利用Fisher相似度系数确定故障类型;最后,通过轧钢过程的仿真研究验证了混合KPLS-FDA方法的有效性. A process monitoring and quality prediction method based on combining kernel partial least squares (KPLS) with Fisher discriminant analysis (FDA), hybrid KPLS-FDA, is proposed. Firstly, the nonlinear feature of process data is extracted by using KPLS, the internal model of KPLS is established by using FDA, and the optimal feature vector and the discriminant vector which satisfies maximal separation degree are obtained for condition monitoring. If the process is under normal condition, the regression model of KPLS is further used for quality prediction. Otherwise, the similar degree in the fault feature direction is used for fault diagnosis. Finally, the simulation research for steel rolling process is performed to show its accuracy and effectiveness in fault diagnosis and quality prediction.
出处 《控制与决策》 EI CSCD 北大核心 2013年第1期141-146,共6页 Control and Decision
基金 国家自然科学基金项目(50974145) 辽宁省科技攻关计划项目(2009216007)
关键词 核偏最小二乘 费舍尔判别分析 非线性特征提取 过程监控 质量预报 kernel partial least squares: Fisher discriminant analysis nonlinear feature extraction~ processmonitoring~ quality prediction
  • 相关文献

参考文献3

二级参考文献28

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2Wold S, Antti H, Lindgren F. Orthogonal Signal Correction of Near-Infrared Spectra[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1) : 175.
  • 3Sjoblom J, Svensson O, Josefson M. An Evaluation of Orthogonal Signal Correction Applied to Calibration Transfer of Near Infrared Spectra [J]. Chemometries and Intelligent Laboratory Systems, 1998, 44(1): 229.
  • 4Svante Wold, Nouna Kettaneh, Kjell Tjessem. Hierarchical Multiblock PLS and PC Models for Easier Model Interpretation and as an Alternative to Variable Selection [J]. J Chemometrics, 1996, 10(9): 463.
  • 5Stefan R, John F. Adaptive Batch Monitoring Using Hierarchical PCA [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 41(1): 73.
  • 6Zarei K, Atabati M, Malekshabani Z. Simultaneous Spectrophotometric Determination of Iron, Nickel and Cobalt in Micellar Media by Using Direct Orthogonal Signal Correction-Partial Least Squares Method [J]. Analytica Chimica Acta, 2006, 556 (1): 247.
  • 7Nizai A, Yazdanipour A. Spectrophotometric Simultaneous Determination of Nitrophenol Isomers by Orthogonal Signal Correction and Partial Least Squares [J]. J Hazardous Materials, 2007, 146(1): 421.
  • 8Trygg J, Wold S. Orthogonal Projections to Latent Structures (O-PLS) [J]. J Chemometrics, 2002, 16(3): 119.
  • 9Gabrielsson J, Jonsson H, Airiau C. The OPLS Methodology for Analysis of Multi-Block Batch Process Data [J]. J Chemometrics, 2006, 20(8): 362.
  • 10Trygg J, Wold S. O2-PLS, A Two-Block (X-Y) Latent Variable Regression (LVR) Method With an Integral OSC Filter [J]. J Chemometrics, 2003, 17(1): 53.

共引文献16

同被引文献33

  • 1王正帅,邓喀中.概率积分法参数辨识的多尺度核偏最小二乘回归方法[J].岩石力学与工程学报,2011,30(S2):3863-3870. 被引量:12
  • 2Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process[J]. J of Process Control, 2012, 22(9): 1567-1581.
  • 3Jiang Q, Yan X, Tong C. Double-weighted independent component analysis for non-Gaussian chemical process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14396-14405.
  • 4Zhang Y, Zhang Y. Fault detection of non-Gaussian processes based on modified independent component analysis[J]. Chemical Engineering Science, 2010, 65(16): 4630-4639.
  • 5Stefatos G, Ben Hamza A. Dynamic independent component analysis approach for fault detection and diagnosis[J]. Expert Systems with Applications, 2010, 37(12): 8606-8617.
  • 6Rashid M M, Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 115: 44-58.
  • 7Lee J M, Qin S J, Lee I B. Fault detection of nonlinear processes using kernel independent component analysis[J]. Canadian J of Chemical Engineering, 2007, 85(4): 526-536.
  • 8Fan J, Wang Y. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis[J]. Information Sciences, 2014, 259: 369-379.
  • 9Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers[J]. Sigmod Record ACM, 2000, 29(2): 93-104.
  • 10Lee J, Kang B, Kang S H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring[J]. J of Process Control, 2011, 21(7): 1011-1021.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部