期刊文献+

导弹非零给定点LQR自动驾驶仪设计 被引量:3

Missile Autopilot Design Based on Non-zero Set Point LQR Method
下载PDF
导出
摘要 静不稳定控制技术是提高空空导弹机动性能的有效手段。针对静不稳定导弹的控制问题,基于非零给定点线性二次型调节器(LQR)理论设计了纵向两回路自动驾驶仪。首先给出一种基于英美弹体坐标系的静不稳定导弹状态空间模型,引入加速度计到质心的距离参量;然后使用非零给定点输出调节器理论,推导了针对一般状态空间表达式描述的系统的最优控制问题,求得了通用解和自动驾驶仪的结构和参数表达式;最后根据经典控制理论对权重系数的选择进行理论研究和仿真分析,并对所设计自动驾驶仪的鲁棒性能以及引入加速度计到质心的距离变量对控制效果的影响进行仿真分析。结果表明所设计的自动驾驶仪有较强的鲁棒性,对静不稳定导弹起到了较好的控制作用。 It' s an efficient way to introduce static unstablity in the design of air-to-air missile. A two-loop longitudinal autopilot is de- signed to solve the problem of control on the statically unstable missile based on the theory of Non-zero set point regulator. Firstly, a missile' s longitudinal model in the style of state space notation is introduced, which is established on the hesperian body axis system, at the same time, the distance between aecelerometer and centroid is drawn into the model. And then, the optimal control is derivated from the theory of LQR and Non-zero set point regulator, with which a common result is obtained, and then, the autopilot is designed. At last, the weights are researched with the classical control theory, and the autopilot' s performance is analyzed from its robustness, anti-jamming ability and the affection of the distance between accelerometer and centroid. Results show that the autopilot has a stronger robustness, which can control the statically unstable missile efficiently.
出处 《控制工程》 CSCD 北大核心 2013年第1期79-83,共5页 Control Engineering of China
基金 航空科学基金项目(20100196002)
关键词 静不稳定导弹 自动驾驶仪 两回路自动驾驶仪 最优控制 statically unstable missile autopilot two-loop autopilot optimal control
  • 相关文献

参考文献10

  • 1范军芳,林德福,祁载康,张宏.两回路自动驾驶仪设计与分析[J].系统工程与电子技术,2008,30(12):2447-2450. 被引量:12
  • 2邢立旦,陈万春,殷兴良.应用最优/经典综合设计法设计三回路BTT自动驾驶仪[J].宇航学报,2008,29(1):183-187. 被引量:4
  • 3邢立旦,陈万春,殷兴良.最优/经典综合法设计直接力/气动力复合控制器[J].北京航空航天大学学报,2009,35(8):921-924. 被引量:9
  • 4Mracek Curtis P,Ridgely Brett D. Missile longitudinal autopilots:Connections between optimal control and classical topologies AIAA 2005-6381[R].2005.
  • 5Gamell P. Guided weapon control systems[M].Oxford Pergamon Press,1980.
  • 6陈佳实.导弹制导控制系统分析与设计[M]北京:宇航出版社,1987.
  • 7解学书.最优控制-理论与应用[M]北京:清华大学出版社,1986.
  • 8Nesline William F,Wells Brian H,Zarchan Paul. Combined optimal/classical approach to robust missile autopilot design[J].Journal of Guidance and Control,1979,(03):316-322.
  • 9彭冠一;孙连举.防空导弹制导控制系统设计(上)[M]北京:宇航出版社,1996.
  • 10Zarchan Paul. Tactical and strategic missile guidance[M].Virginia:American Institute of Aeronautics and Astronautics Inc,1994.45-66.

二级参考文献22

  • 1刘代军.主动控制技术在空空导弹中的应用[J].战术导弹技术,2001(5):43-49. 被引量:4
  • 2Zarchan P. Tactical and strategic missile guidance[M]. Washington D C: AIAA, 2002.
  • 3Nesline F W, Nesline M D. How autopilot requirements constrain the aerodynamic design of homing missiles[C] //American Control Conference, 1984: 716- 730.
  • 4Reichert R T. Application of H∞ control to missile autopilot design[J]. AIAA, 89 - 3550 - CP.
  • 5Garnell P. Guided weapon control systems[M]. Beijing: Beijing Institute of Technology, 2003.
  • 6Mracek C P, Ridgely D B. Missile longitudinal autopilots: connections between optimal control and classical topologies [J]. AIAA, 2005 - 6381.
  • 7Buschek H. Robust autopilot design for future missile systems [J]. AIAA,1997.
  • 8Buschek H. Design and flight test of a robust autopilot for the IRIS-T air-to-air missile[J]. Control Engineering Practice, 2003 (11): 551-558.
  • 9Devaud E, Siguerdidjane H, Font S. Some control strategies for a high-angle-of attack missile autopilot[J]. Control Engineering Practice, 2000(8) : 885 - 892.
  • 10Chadwick W R, Augmentation of high-altitude maneuver performance of a tail-controlled missile using lateral thrust [ R ]. ADA328973, 1995.

共引文献22

同被引文献43

  • 1陈宇强,赵育善.导弹最优制导律弹道仿真分析[J].指挥控制与仿真,2007,29(3):91-93. 被引量:6
  • 2章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,2006:15-17.
  • 3Mclnnes CR. Passive control of displaced solar sail orbits[ J]. Jour- nal of Guidance, Control and Dynamics, 1998,21 (6) :975-982.
  • 4Victoria L Coverstone,John E Prussing. Technique for escape from geosynehronous transfer orbit using a solar sail[ J ]. Journal of Guid- ance,Control and Dynamics,2003,26(4) :628-634.
  • 5Sleight D Mann, Troy Mann, Lichodzijewski D, et aI. Structural a- nalysis and test comparison of a 20-meter inflation-deployed solarsail[ C ]. AIAA 47th Structures, Structural Dynamics, and Materials Conference, Newport, 2006, ( 5 ) : 1706-1721.
  • 6Roy M Young. TRL assessment of solar sail technology development following the 20-meter system ground demonstrator hardware testing [C]. 48th AIAA Structures, Structural Dynamics, and Materials Conference, Hawaii, 2007, (4) : 2248-2258.
  • 7Yuya Mimasu, Tomohiro Yamaguchi, Michihiro Matsumoto, et al. Spinning solar sail orbit steering via spin rate Control[ J]. Advances in Space Research,2011,48 (I 1 ) :1810-1821.
  • 8Bong Wie. Solar sail attitude control and dynamics, part I [ J ]. Jour- nal of Guidance ,Control and Dynamics,2004,27 (4) :526-535.
  • 9Bong Wie. Solar sail attitude control and dynamics, Part II [ J ]. Jour-nal of Guidance, Control and Dynamics, 2004,27 ( 4 ) : 536- 544.
  • 10Zhang Y, Wang Y, Zhang G Q. Feedback LPV control of a class of nonlinear matrix second order systems [ C ]. 8th World Congress on Intelligent Control and Automation. Piscataway, N J, USA: IEEE, 2010 : 3898-3903.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部