期刊文献+

基于改进PSO的自主车辆实时运动规划方法 被引量:2

An Real-time Motion Planning Method for ALV Based on Improved PSO Algorithm
下载PDF
导出
摘要 通过在弧长-曲率空间建立车辆运动学模型的方法,在满足非完整约束条件的基础上,将运动规划问题转化为函数优化问题。为提高PSO算法的优化速度,满足算法工程应用的实时性要求,提出一种基于多任务种群协同进化的粒子群优化算法。该算法将种群分为3种执行不同任务动作的子群,充分扩展搜索范围,挖掘搜索域内的有用信息,使种群的全局搜索能力和局部搜索能力达到较好的平衡状态。实验结果证明,将协同进化PSO算法应用于弧长-曲率空间中的函数优化问题,可实现对自主车辆的运动规划,规划轨迹满足车辆运动学和动力学约束,保证了车辆行驶的安全性和平稳性。 The motion planning for the autonomous land vehicle in an environment including obstacles is a nonholonomic constraint global optimization problem. For this optimization problem, the motion model of the vehicle is built firstly in the arclength-curvature space, and then the motion planning problem is transformed to a function optimization problem in this paper. To improve the optimiza- tion speed of PSO algorithm and satisfy its real-time requirement in engineering application, an improved PSO based on the multi-tasking subpopulation cooperation is developed. By introducing the idea of multi-tasking subpopulation mechanism used in artificial bee colony algorithm, the population is divided into three subpopulation with different task, and the search area is extended and more useful infor- mation is excavated without the increase of the amount of the particles. The improved PSO-MTC algorithm is used to optimize the param- eters of arclength-curvature model. The simulation result shows the effectiveness of the proposed method in solving the problem of ALV motion planning.
出处 《控制工程》 CSCD 北大核心 2013年第1期169-174,共6页 Control Engineering of China
基金 军队战略投资科研项目
关键词 自主车辆 运动规划 弧长-曲率空间 粒子群优化 非完整约束 协同进化 autonomous land vehicle motion planning arclength-curvature space particle swarm optimization nonholonomic con-straint cooperative evolution
  • 相关文献

参考文献27

  • 1Goldberg K. Completeness in robot motion planning[A].1994.
  • 2Laumond J P,Sekhavat S,Lamiraux F. Guidelines in Nonholonomic Motion Planning for Mobile Robots[M].Springer-Verlag,1998.
  • 3Saeed B Niku. Introduction to Robotics:Analysis,Systems,Applications[M].Prentice-Hall/Pearson,2004.
  • 4刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 5Lavalle S M. Planning Algorithms[M].University of Illinois,2004.
  • 6Halperin D,Kavraki L,Latombe J C. Robot Algorithms,Algorithms and Theory of Computation Handbook[M].CRC Press,Inc,1999.
  • 7Jean F. Complexity of Nonholonomic Motion Planning[J].International Journal of Control,2001,(08).
  • 8Thomas M Howard,Alonzo Kelly. Optimal Rough Terrain Trajectory Generation for Wheeled Mobile[J].International Journal of Robotics Research,2007,(02):141-166.
  • 9Dave Ferguson,Thomas M Howad,Maxim Likhachev. Motion Planning in Urban Environments[J].Journal of Field Robotics,2008.939-960.
  • 10Kennedy J,Eberhart R C. Particle swarm optimization[A].Australia,1995.

二级参考文献82

  • 1罗金炎,江忠良.粒子群优化算法的系统稳定性分析[J].集美大学学报(自然科学版),2007,12(4):376-379. 被引量:1
  • 2张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 3刘成良,张凯,付庄,曹其新,殷跃红.神经网络在机器人路径规划中的应用研究[J].机器人,2001,23(S1):605-608. 被引量:11
  • 4李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 5DeSouza G N,Kak A C.Vision for mobile robot navigation:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (2):237-267.
  • 6Urmson C,Anhalt J,Clark M,et al.High Speed Navigation of Unrehearsed Terrain-Red Team Technology for Grand Challenge[R].CMU-RI-TR-04-37,The Robotics Institute,Carnegie Mellon University,2004.
  • 7Volpe R,Baumgatner E,Schenker P,Hayati S.Technology development and testing for enhanced mars rover sample return operations[A].Proc IEEE Aerospace Conference[C].2000.
  • 8Leonard J,Durrant-Whyte H F.Mobile robot localization by tracking geometric beacons[J].IEEE transaction on robotics and automation,1991,7 (3):376-38.
  • 9Nilsson N J.Shakey the robot[R].Technical Report TR223,SRI International,1984.
  • 10Lozano-Perez T,Wesley M A.An algorithm for planning collision-free paths among polyhedral obstacles[J].Communications of the ACM,1979,22 (10):'560- 570.

共引文献387

同被引文献12

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部