期刊文献+

基于Kriging模型的环形桁架可展天线结构参数优化方法 被引量:1

Parameters optimization algorithm for ring truss deployable antenna structures based on Kriging model
下载PDF
导出
摘要 针对传统结构动力学优化过程中求解效率较低的问题,以环形桁架可展天线结构参数优化为研究背景,在环形桁架可展天线结构的参数变量空间中,以试验设计方法选取样本点,通过有限元方法得到各个样本点的第一阶固有频率、固定载荷最大变形等响应值,利用样本点和响应值的关系建立Kriging近似模型进行优化算法的寻优,得到满足所有约束条件的最优解。结果表明,所得到的环形桁架可展天线第一阶固有频率、固定载荷最大变形的响应面呈现比较明显的非线性关系,基于Kriging模型的结构优化方法能比较准确地对环形桁架可展天线进行寻优设计。 The solution efficiency for the traditional structure dynamic optimization process is relatively low. Based on a discussion of the parameters optimization for the ring truss deployable antenna structures, this research chose the sample points by design of experiment method in the variable parameter space. The response values of the first order natural frequency, total mass, and the maximum deformation with specific loading for the ring truss deployable antenna structures were obtained by the finite element method.. The Kriging models, which were established by the relationship between the sample points and response values, were used to find the optimum solution with optimization algorithm. It is required that the optimum solution should satisfy all the constrained conditions. The results showed that the response surfaces of the first order natural frequency, total mass, and the maximum deformation with specific loading for the ring truss deployable antenna structures were nonlinear relationship with the design variable. The structure optimization method with the Kriging approximate model can be used to find the optimum structural parameters of the ring truss deployable antennas accurately.
作者 何星星 廖瑛
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第6期111-115,共5页 Journal of National University of Defense Technology
关键词 KRIGING模型 环形桁架可展天线 参数优化 试验设计 遗传算法 Kriging model ring truss deployable antennas parameters optimization design of experiment genetic algorithm
  • 相关文献

参考文献9

  • 1Kiper G K, Soylemez E. Deployable space structures [ C ]// Proceedings of Istanbul: 2009 International Conf. on Recent Advances in Space Technologies, IEEE, 2009 : 131 - 138.
  • 2Gunnar T. Deployable tensegrity structures for space applications [ D ]. Stockholm, Sweden : Royal Institute of Technology Department of Mechanics, 2002.
  • 3Anders S. Modeling and control of tensegrity structures [D]. Department of Marine Technology Norwegian University of Science and Technology, 2007.
  • 4Knight B. Deployable antenna kinematics using tensegrity structure design[D]. University of Florida, 2000.
  • 5Mark T W, Geoffrey M W, Hedgepeth J M. Light-weight reflector for concentrating radiation:USA5680145 [P]. 1997:1 -25.
  • 6Tibert A G. Optimal design of tension truss antennas [ C ]// Proceedings of Norfolk, Virginia: 44th AIAA/ ASME/ASCE/ AHS Structures, Structural Dynamics, and Materials Conference, 2003 : 1 - 10.
  • 7Krishna V. Structural optimization using ANSYS classic and radial basis function based response surface models [ D ]. Arlington: Univ. of Texas, 2009.
  • 8刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 9Simpson T W, Mauery T M. Kriging models for global approximation in simulation-based muhidisciplinary design optimization [ J ]. AIAA Journal, 2001, 39 ( 12 ) : 2233 - 2241.

二级参考文献12

  • 1孙焕纯,王跃方,黄吉锋.离散变量桁架的形状优化设计[J].大连理工大学学报,1995,35(1):10-16. 被引量:18
  • 2谭中富.以杆长平方和为目标函数进行形状优化的二次规划方法[J].黄淮学刊(自然科学版),1996,12(2):36-40. 被引量:1
  • 3谭中富,王慧云.桁架结构几何外形的优化设计[J].哈尔滨建筑大学学报,1997,30(2):6-11. 被引量:1
  • 4OHKUBO S, KAWASHITA S. TANIWAKI K.Shape optimization of nonlinear truss based on the energy principle, short paper proceedings of 3rd world congress of structural and multidisciplinary optimization[A]. WCSMO-3[R]. 1999,245-247.
  • 5TIMOTHY W S. A Concept Exploration Method for Product Family Design [D]. Georgia Institute of Technology, 1998.
  • 6LOPHAVEN S N, NIELSEN H B, SCNDERGAARD J. DACE-A Madab Kriging Toolbox. Version 2.0. Report IMM-REP-2002-12, Informaties and Mathematical Modelling[EB/OL]. Technical University of Denmark, 34 pages, 2002. http://www.imm. dtu. dk/~ hbn/publ/TR0212, ps.
  • 7PRASAD B, HAFTKAV R T. Optimal structural design with plate finite elements[J]. J Struct Div,ASCE ST11, 1979 : 2367-2382.
  • 8BRAIBAND V, FLEURY C. Shape optimal design using B-splinesv[J]. Computer Methods in Applied Mechanics and Engineering, 1984,44 : 247-267.
  • 9DUAN Bao-yan, YE Shang-hui. A mixed method for shape optimization of skeletal structures [J]. Eng Opt, 1986,10(3) : 183-197.
  • 10隋允康,由衷.具有两类变量的空间桁架分层优化方法[J].计算结构力学及其应用,1990,7(4):82-92. 被引量:30

共引文献33

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部