期刊文献+

机载平台野外立体场景弱小变化目标检测 被引量:1

Dim changing target detection of outside stereo scene for airborne platform
下载PDF
导出
摘要 提出了一种针对机载序列图像的野外立体场景弱小变化目标检测新方法。为了补偿平台运动,提出了一种级联图像配准模式,即首先通过生物视觉方法对待检图像进行快速粗配准,然后通过不变系数最小二乘匹配进行精配准;为了补偿图像间的灰度变化,提出了直方图一致性变换方法,该方法不仅可以处理线性灰度变化而且可以处理非线性灰度变化;为了弱化场景立体效应影响,提出分子区的方法,即通过将图像划分为若干子区,各对应子区独立求解仿射参数,使得待检图像不同位置子区可以对应不同几何变换参数。光电吊舱真实图像变化检测实验,证明了文章方法的正确性和有效性。 We present a new method to detect the dim changing target for the image sequence of outside stereo scene obtained from the airborne camera. In order to compensate for the movement of the platform, a cascading image registration mode is proposed, which firstly uses the biological vision method to register the images to be detected coarsely and fast, and which then uses least square match based on invariant coefficient to register the images accurately. In order to compensate for the gray-scale changes between the images, a new histogram similarity transformation is proposed, which is ? able to handle not only linear gray-scale changes but also nonlinear gray-scale changes. In order to reduce the stereo effect, a sub-region division method is proposed, which divides an image into several sub-regions, and then calculates the affine transformation parameters for each corresponding sub-regions independently. Using this scheme, we can make sure that different sub-regions Correspond to different geometric transformation parameters. Experimental results using many real images obtained from electro-optic pods dearly demonstrate the correctness and validity of the method.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第6期130-135,共6页 Journal of National University of Defense Technology
关键词 变化检测 目标检测 立体效应 图像配准 最小二乘匹配 生物视觉 change detection target detection stereo effect image registration least square matching biological vision
  • 相关文献

参考文献13

  • 1Ackermann F. Digital image correlation: performance and potential application in photogrammetry [J]. Remote Sensing and Cartography, 1984, 12 (1):273-282.
  • 2刘晓春,雷志辉,李立春,尚洋,侯旺,于起峰.基于不变系数的光照不变最小二乘匹配[J].光学技术,2012,38(5):611-618. 被引量:1
  • 3Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences [ J ]. IEEE Trans. on Image Processing, 2011, 20 ( 6 ) : 1709 - 1724.
  • 4Hayman E, Eklundh J. Statistical background subtraction for a mobile observer [ C ]//Proceedings ICCV, 2003,789 - 796.
  • 5Radke R J, Andra S, Al-kofahl O. Image change detection algorithms: a systematic survey [ J ]. IEEE Trans. on Image Processing, 2005, 14(3) : 1 -14.
  • 6Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [ C ]//Proceedings CVPR, 1999, 246 - 252.
  • 7Gruen A W. Adaptive least squares correlation a powerful image matching technique [ J ]. Remote Sensing and Cartography, 1985, 14 (3): 175- 187.
  • 8于起峰,雷志辉,刘晓春,李强,朱宪伟.基于生物视觉的目标匹配原理与实验进展[J].红外与激光工程,2008,37(6):1092-1094. 被引量:4
  • 9Baker S, Matthews L. Lucas-kanade 20 years on: a unifying framework [ J ]. International Journal of Computer Vision, 2004, 56(3) : 221 -255.
  • 10刘晓春,于起峰,雷志辉.增强景象匹配鲁棒性的灰度变换技术研究[J].国防科技大学学报,2010,32(3):48-52. 被引量:3

二级参考文献56

共引文献33

同被引文献10

  • 1Image Systems. TrackEye [ EB/OL ]. ( 2013 - 08 ). http:// wwww. imagesystems, se/.
  • 2Wu Y, Lim J, Yang M H. Online object tracking: a benchmark [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013:2411 - 2418.
  • 3Schweiger F, Zeisl B, Georgel P F. Maximum detector response markers for SIFT and SURF [ C ]//Proceedings of Vision, Modeling and Visualization Workshop, 2009 : 145 - 154.
  • 4Ahn S J, Rauh W. Circular coded target for automation of optical 3D-measurement and camera calibration [ J ]. Intemational Journal of Pattem Recognition and Artificial Intelligence, 2001, 15(6): 905-919.
  • 5Besl P J, McKay N D. A method for registration of 3 - D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2) : 239 -256.
  • 6Suzuki S. Topological structural analysis of digitized binary images by border following [ C ]//Proceedings of Computer Vision , Graphics, and Image Processing, 1985,30 ( 1 ) : 32 -46.
  • 7Flusser J, Suk T. Pattern recognition by affine moment invariants [ J ]. Pattern Recognition, 1993, 26 ( 1 ) : 167 - 174.
  • 8Kalal Z, Mikolajczyk K, Matas J. Tracking-learuing- detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
  • 9Muja M, Lowe D G. Fast approximate nearest neighbors with automatic algorithm configuration [ C ]//Proceedings of VisApp International Conference on Computer Vision Theory and Applications, 2009 : 331 - 340.
  • 10Google. Trimble 3D warehouse [ EB/OL ]. ( 2013 - 05 ). http ://sketchup. g oogle, corn/3 dwarehouse/.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部