期刊文献+

整数分解新方向 被引量:4

New directions in integer factorization
下载PDF
导出
摘要 整数分解是数论中的一个非常古老的计算难解性问题,至今仍然没有一个快速的满意的解决办法,而当今世界最有名气、应用最为广泛的RSA密码体制,其安全性就是基于整数分解的难解性的。本文力图介绍整数分解的若干重要算法、当今整数分解领域中的最新研究方向和最新研究动态,以及它们对RSA密码破译工作的作用和影响。 It is well-known that the security of the most famous and widely used public-key crypto- system RSA relies on the computational intractability of the integer factorization problem. In this paper, we shall discuss some new directions and new developments in integer factorization, and their implica- tions in the cryptanalysis of RSA and other factoring-based cryptosystems.
作者 颜松远
出处 《计算机工程与科学》 CSCD 北大核心 2013年第1期1-14,共14页 Computer Engineering & Science
基金 英国皇家学会和英国皇家工程院资助 湖北省《百人计划》资助项目
关键词 质数 质因数分解 整数分解 RSA密码体制 信息安全 prime numbers prime factorization integer factorization RSA cryptography informationsecurity
  • 相关文献

参考文献21

  • 1Euclid. The thirteen books of Euclid's elements[M].Kent:Dover Publications,1956.
  • 2Gauss C F. Disquisitiones arithmeticae[M].Waterhouse W C,New York:Springer-Verlag,1975.
  • 3Agrawal M,Kayal N,Saxena N. Primes is in P[J].Annals of Mathematics,2004,(02):781-793.doi:10.4007/annals.2004.160.781.
  • 4Granville A. It is easy to determine whether a given integer is prime[J].Bulletin of the American Mathematical Society(New Series),2004,(01):3-38.
  • 5Atkin A O L,Morain F. Elliptic curves and primality proving[J].Mathematics of Computation,1993.29-68.
  • 6Rivest R L,Shamir A,Adleman L. A method for obtaining digital signatures and public key cryptosystems[J].Communications of the ACM,1978,(02):120-126.
  • 7Lehman R S. Factoring large integers[J].Mathematics of Computation,1974,(126):637-646.
  • 8McKee J F. Turning Euler's factoring methods into a factoring algorithm[J].Bulletin of London Mathematical Society,1996,(04):351-355.doi:10.1112/blms/28.4.351.
  • 9Pollard J M. Theorems on factorization and primality testing[J].Proc of Cambridge Philosophy Society,1974,(03):521-528.
  • 10Strassen V. Einige resultate über berechnungskomplexit(a)t[J].Jahresbericht der Deutschen Mathematiker-Vereinigung,1997.1-84.

同被引文献50

  • 1夏静波,张四兰,陈建华.高效的原根生成算法[J].计算机工程与应用,2006,42(11):32-34. 被引量:1
  • 2李中政,朱绍文,黄智,肖礼盛,熊炜.基于嵌入式硬件的加密技术研究与实现[J].科技信息,2007(6):35-36. 被引量:1
  • 3Brent R P. Recent Progress and Prospects for Integer Factorisation Al- gorithm[ EB/OL]. 2000 -07 -28. http://www, math. leidenuniv, nl/ edix/public_html_rennes/cours/brent, pdf.
  • 4Pomerance C. The Quadratic Sieve Factoring Algorithm[ EB/OL]. 1985 -04 - 11. http://cvs, cs. umd. edu/ gasarch/factoring/quad- sieve, pdf.
  • 5Cosnard M, Philippe J L. The Quadratic Sieve Factoring Algorithm on Distributed Memory Multiprocessors [ C ]//Distributed Memory Compu- ting Conference. Charleston, SC, USA : IEEE, 1990.
  • 6Landquist E. The Quadratic Sieve Factoring Algorithm[ EB/OL]. 2001 -12 - 14. http://www, cs. colorado, edu/ jrblack/class/csci7000/ s05/quadsieve, pdf.
  • 7Milan J. Factoring Small to Medium Size Integers: An Experimental Comparison[ EB/OL]. 2010 - 03 - 29. http ://hal. archives-ouvertes. fr/docs/00/18/86/45/PDF/smallint_expcomp_draft_01, pdf, http :// hal. inria, fr/docs/OO/45/16/IM/PDF/smallint_expcomp_draft_02_ 1. pdf.
  • 8Ggnfs. GGNFS[ CP]. http ://ggnfs. cvs. sourceforge, net/ggnfs.
  • 9Kechlibar R M. The Quadratic Sieve-introduction to theory with regard to implementation issues[ EB/OL ]. 2005 -04 - 15. http://www, kar- lin. mff. cuni. cz/ krypto/mpqsTmain_file, pdf.
  • 10Silverman R D. The Multiple Polynomial Quadratic Sieve [ EB/OL ]. 1987 -01 - 15. http://www, ams. org/joumals/mcom/1987-48-177/ S0025-5718-1987-0866119-8/S0025-5718-1987-0866119-8. pdf.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部