期刊文献+

基于归一化边缘互信息与自适应加速粒子群的图像配准方法 被引量:4

Adaptive accelerated particle swarm algorithm for image registration based on normalized edge mutual information
下载PDF
导出
摘要 传统的归一化互信息配准方法未利用图像的空间信息,当图像中混有一定噪声时,会出现误配准。边缘是图像最基本的特征之一,为了改进归一化互信息方法,提高图像配准的精度,加快收敛速度,将图像的边缘信息与灰度信息自适应地结合,形成归一化边缘互信息测度(NCMI),提出一种基于加速因子的自适应加速粒子群优化算法(AAPSO)来优化基于NCMI测度的图像配准。AAPSO算法通过对解排序,将指定数量的劣解进行进化加速来引导粒子的飞行,并对自适应惯性权重公式加以改进,提高了算法的收敛性,防止早熟收敛并增加优化解的多样性,同时加入加速因子来提高收敛速度。实验结果表明,该方法配准精度高,速度快,具有较强的实用性。 The traditional normalized mutual information neglects the spatial information, so the reg- istration result will be incorrect when the image mixes with noises. Edge is the basic character of image, in order to solve the drawback of the normalized mutual information method, improve precision and speed up the convergence, we combines the image edge information with the gray information adaptively to form the normalized edge mutual information measure (NCMI) and propose an adaptive accelerate particle swarm optimization algorithm (AAPSO) based on the accelerated factor. The AAPSO is used for image registration based on the NCMI. By sorting the solutions, a specified number of worst solu- tions will be forced to accelerate in order to determine the direction of global solution, and we also im- prove the adaptive inertia weight formula, thereby it improves convergence, prevents premature conver- gence and increases the diversity of the optimal solution. Meanwhile, the AAPSO algorithm adds the ac- celerated factor to improve convergence speed. Result shows that the method has a high registration pre- cision, fast registration speed, and it has strong applicability.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第1期119-123,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60973094)
关键词 图像配准 归一化互信息 归一化边缘互信息 粒子群优化 AAPSO算法 image registration normalized mutual information normalized edge mutual information particle swarm algorithm AAPSO algorithm
  • 相关文献

参考文献2

二级参考文献27

  • 1MAINTZ J B A, VIERGEVER M A. A survey of medical image registration[ J]. Medical Image Analysis, 1998,2 ( 1 ) : 1- 36.
  • 2JENKINSON M, SMITH S. A global optimization method for robust affined registration of brain images[ J]. Medical Image Analysis, 2001,5(2) :143-156.
  • 3BROWN L G. A survey of image registration techniques [ J]. Computing Surveys, 1992,24(4) :325-376.
  • 4MOFRTDIYXKI J. Numerical methods for image registration [ M ]. New York: Oxford University Press, 2004.
  • 5KENNEDY J, EBERHART R. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Network. Perth: IEEE Press, 1995 : 1942-1948.
  • 6SHI Yu-hui, EBERHART R. A modified particle swarm optimizer [ C ]//Proc of IEEE International Conference of Evolutionary Computation. Piscataway: IEEE Press, 1998:69-73.
  • 7CLERC M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[ C ]//Proc of Congress on Evolutionary Computation. Piscataway : IEEE Press, 1999 : 1951-1957.
  • 8SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[ C ]//Proc of Congress on Evolutionary Computation. 2004:325-331.
  • 9FANG Wei, SUN Jun, XU Wen-bo. Design IIR digital filters using quantum-behaved particle swarm optimization [ C ]//Proc of the 2nd International Conference on Natural Computation. Berlin: Springer, 2006 : 992 - 998.
  • 10SUN Jun, XU Wen-bo, FANG Wei. Solving multi-period financial planning problem via quantum-behaved particle swarm algorithm [ C]//Proc of Internationd Conference on Intelligent Computing. Berlin: Springer, 2006:1158-1169.

共引文献23

同被引文献34

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部