期刊文献+

数据挖掘在河道洪水准确预测中的应用研究 被引量:4

Research the Application of Data Mining in the River Flood Accurate Prediction
下载PDF
导出
摘要 研究河道洪水的准确预测问题。由于水文数据是河道过去某些较短时间段内获取的数据,不能完整包含河道特性,使得较短的水文数据中的预报因子较难提取。传统的预测方法是直接提取水文数据中的预报因子,不能保证预报因子的准确度而造成预测准确性不高。为此,提出数据挖掘技术应用在河道洪水预测中。对水文数据进行分组后根据模糊算法对数据进行优化,采用数据挖掘算法找到水文数据隐藏的深层规律,并据此提取出预报因子,避免直接从较短的水文数据中提取预报因子而不准确的问题,最终根据关联规则构建洪水预测模型,并输入预报因子和降水值完成洪水预测。实验表明,这种方法能够从较短水文数据中有效提取预报因子,准确完成河道的洪水预测。 Research the accurate prediction of the river flood. Because the hydrological data is obtained from some short river data within the past time period, short hydrological data can't complete include river characteristics, making the relatively the forecast factor is hard to extract from short hydrological data. The traditional prediction method is direct extraction of the hydrological data predictor, cannot guarantee the accuracy of prediction factors, causing the prediction accuracy is not high. In order to solve this problem, this paper put forward the data mining technology to apply in river flood forecast. The hydrological data is grouped and then optimized according to fuzzy algorithm, using data mining algorithm to find the hydrological data hidden deep rule which are used to extract the forecast factor, avoiding the low accurate predictor problem of direct extraction from a relatively short period of the hydrological data. Finally, according to the flood forecasting model construction association rules, and input forecast factor and precipitation value to complete the flood forecast. Experimental results show that this method can from short of the hydrological data extracted effectively forecast factor, the flood forecast accurately completing river.
出处 《计算机仿真》 CSCD 北大核心 2013年第1期401-403,414,共4页 Computer Simulation
基金 中央高校基本科研业务费专项资助项目(531107040202)
关键词 洪水预测 水文数据 数据挖掘 Flood forecast Hydrological data Data mining
  • 相关文献

参考文献5

二级参考文献12

共引文献12

同被引文献40

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部