期刊文献+

q-一致光滑Banach空间中严格伪压缩映射的Mann型粘滞逼近法

The Mann-type viscosity approximation method for strict pseudo-contractions in q-uniformly smooth Banach spaces
下载PDF
导出
摘要 在实q-一致光滑的Banach空间中根据Mann-型粘滞逼近法,引入了一迭代格式来寻求一族严格伪压缩映射的公共不动点;该公共不动点还是某一变分不等式的解.结果改进与推广了先前与最近文献中的相应结果. We introduce an iterative scheme by the Mann-type viscosity approximation method for finding a common fixed point of a finite family of strictly pseudo-contractive mappings, which solves some variational inequality in a real q-uniformly smooth Ba- nach space. The results improve and extend the corresponding results in the previous and recent literature.
出处 《上海师范大学学报(自然科学版)》 2012年第6期551-558,共8页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(11071169)
关键词 不动点 q-一致光滑 严格伪压缩 粘滞逼近 变分不等式 fixed point q-uniformly smooth strictly pseudo-contractive viscosity approximation variational inequality
  • 相关文献

参考文献11

  • 1BROWDER F E,PETRYSHYN W V. Construction of fixed points of nonlinear mappings in Hilbert spaces[ J]. J Math A- nal Appl, 1967,20 : 197 - 228.
  • 2MANN W R. Mean value methods in iterations[ J]. Proc Amer Math Soc, 1953,14:506 -510.
  • 3MOUDAFI A. Viscosity approximation methods based for fixed piont problems[ J]. J Math Anal Appl,2000,241:46 -55.
  • 4刘英.在q-一致光滑的Banach空间关于严格伪压缩映射的粘滞逼近法[J].数学物理学报(A辑),2011,31(4):998-1007. 被引量:3
  • 5XU H K. Viscosity approximation methods for nonexpansive mappings [ J ]. J Math Anal Appl,2004,298:279 -291.
  • 6Ha|YunZHOU.Non-expansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces[J].Acta Mathematica Sinica,English Series,2004,20(5):829-836. 被引量:6
  • 7ZHANG H, SU Y F. Strong convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces [ J ]. Nonlinear Anal, 2009,70 : 3236 - 3242.
  • 8XU H K. Iterative algorithms for nonlinear operators[ J]. London Math Soc ,2002,66:240 - 256.
  • 9SUZUKI T. Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals[J]. J Math Anal Appl,2005 ,305 :227 -239.
  • 10ZHOU H Y. Convergence theorems of common fixed points for a finite family of Lipschitz pseudo-contractions in Banach spaces [ J ]. Nonlinear Anal,2008,68:2977 - 2983.

二级参考文献13

  • 1Ha|YunZHOU.Non-expansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces[J].Acta Mathematica Sinica,English Series,2004,20(5):829-836. 被引量:6
  • 2Tan, K. K., Xu, H. K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl., 178, 301-308 (1993).
  • 3Bruck, R. E.: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces.Israel J. Math. 32, 107-116 (1979).
  • 4Reich, S.: weak convergence theorem for nonexpansive mappings in Banach spaces, d. Math. Anal. Appl.,67, 274-276 (1979).
  • 5Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonliear functional equations in Banach spaces. Bull. Amer. Math. Soc., 72, 571-575 (1966).
  • 6Deng, L.: Convergence of the Ishikawa iteration process for nonexpansive mappings. J. Math. Anal. Appl.,199, 769-775 (1996).
  • 7Opial, Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math.Soc., 73, 591-597 (1967).
  • 8Senter, H. F., Dotson, Jr, W. G.: Approximating fixed points of nonexpansive mappings. Proc. Amer.Math. Soc., 44, 375-380 (1974).
  • 9Xu, Z. B., Roach, G. F.: A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations. J. Math. Anal. Appl., 167, 340-354 (1992).
  • 10Zhou, H. Y., Jia, Y. T.: Approximating the zeros of accretive operators by the Ishikawa iteration process.Abstract Appl. Anal., 1(2), 153-167 (1996).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部