期刊文献+

2,4,6-三氯酚的共基质降解机理 被引量:2

Mechanism of 2,4,6-trichlorophenol degradation by means of co-substrates
下载PDF
导出
摘要 分别利用经过驯化的葡萄糖降解菌和2,4,6–三氯酚(TCP)降解菌,通过添加易生物降解的有机物(葡萄糖、苯甲酸、苯酚)作为共基质,对TCP进行好氧生物降解,以考察其降解机理.当利用葡萄糖降解菌降解TCP时,在没有共基质存在时,微生物经历51 h的适应期之后,才能生长,与此同时可利用TCP作为唯一碳源而使其降解.当有共基质存在时,TCP几乎没有降解.而当利用TCP降解菌降解TCP时,在没有共基质的条件下,只需43 h的适应期可使TCP得到降解.实验结果表明:由于在没有共基质存在的条件下,葡萄糖降解菌和TCP降解菌均能利用TCP作为唯一碳源得到生长,并使TCP同时得到降解.因此在有共基质条件下,使TCP的降解效率提高的机理为次级利用,而非共代谢. Domesticated glucose and 2, 4,6-trichlorophenol (TCP) degrading bacteria were respectively used for aerobic biodegradation of TCP by adding readily biodegradable organic matters ( glucose, benzoic acid and phenol) as co-substrates to investigate the mechanism of TCP degradation. Glucose degrading bacteria didn't grow until 51 hours of adaptation period in absence of co-substrates, during which TCP could be degraded by the bacteria as sole carbon source. However, TCP was little degraded in presence of co-substrates. While TCP degrading bacteria were used for aerobic biodegradation of TCP, it only took about 43 hours of adaptation period for the bacteria to remove TCP in absence of co-substrates. Experimental results indicated that both glucose and TCP degrading bacteria could utilize TCP as sole carbon source to grow,and TCP was also effectively degraded simultaneously. So TCP removal rate was accelerated in presence of co-substrates due to secondary utilization instead of co- metabolism.
出处 《上海师范大学学报(自然科学版)》 2012年第6期598-603,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金项目(50978164) 高等学校博士学科点专项科研基金项目(20113127110002) 上海市基础研究重点项目(11JC1409100)
关键词 2 4 6-三氯酚 共基质 次级利用 共代谢 2,4,6-trichlorophenol co-substrate secondary utilization co-metabolism
  • 相关文献

参考文献15

二级参考文献73

共引文献83

同被引文献25

  • 1皮运正,王建龙.臭氧氧化水中2,4,6-三氯酚的反应机理研究[J].环境科学学报,2005,25(12):1619-1623. 被引量:41
  • 2Eker S, Kargi F. Biological treatment of 2, 4, 6-trichlorophenol (TCP) containing wastewater in a hybrid bioreactor system with effluent recycle[ J ]. Journal of environmental management, 2009, 90 (2) : 692 -698.
  • 3Andreoni V, Baggi G, Colombo M, et al. Degradation of 2, 4, 6 - trichlorophenol by a specialized organism and by indige- nous soil microflora : bioaugmentation and self - remediability for soil restoration [ J ]. Letters in applied microbiology, 1998, 27(2): 86-92.
  • 4Diez M C, Castillo G, Aguilar L, et al. Operational factors and nutrients effect on activated sludge treatment for phenolic compounds degradation from Pinus radiata kraft mill effluent[ J]. Bioresource Technol, 2002, 83 (2) : 131 -138.
  • 5Hameed B H. Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay [ J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2007, 307 ( 1 ) : 45 - 52.
  • 6Chin Wang C, Mei Lee C, Jen Lu C, et al. Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacterial J ]. Chemosphere, 2000, 41 (12) : 1873 - 1879.
  • 7Podko cielny P, Dabrowski A, Marijuk 0 V. Heterogeneity of active carbons in adsorption of phenol aqueous solutions[ J]. Applied Surface Science, 2003, 205 ( 1 ) : 297 - 303.
  • 8Gao J, Liu L, Liu X, et al. Levels and spatial distribution of chlorophenols-2, 4-dichlorophenol, 2, 4, 6-trichlorophenol, and pentachlorophenol in surface water of China[ J]. Chemosphere, 2008, 71 (6) : 1181 - 1187.
  • 9International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man[ M]. World Health Organization, 1999.
  • 10Czaplicka M. Sources and transformations of chlorophenols in the natural environment [ J]. Science of the Total Environ- ment, 2004, 322(1) : 21 -39.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部