期刊文献+

Pd-AgNbO_3光催化剂的合成及其光催化活性研究 被引量:1

Synthesis and Photocatalytic Activity of Pd-AgNbO_3
原文传递
导出
摘要 采用浸渍法制备Pd-AgNbO3光催化剂,并运用XRD、XPS、SEM-EDS和DRS等方法对光催化剂进行表征与分析。以亚甲基蓝染料(MB)为降解污染物,考察Pd掺杂对AgNbO3光催化活性的影响。结果表明,Pd引入后AgNbO3的晶型结构及表面性质并未发生变化。DRS分析表明,Pd掺杂后光催化材料在可见光区的吸光度明显提高。光催化降解实验表明,当Pd的掺杂量为0.8%(质量分数,下同),热处理温度为400℃,煅烧时间为3h时,光催化降解活性最高,MB降解率为92.2%。Pd-AgNbO3光催化降解MB符合一级反应动力学特性。 Pd-AgNbO3 photocatalysts were synthesized by an impregnation method. X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectra (XPS) and diffuse reflectance spectra (DRS) were employed to investigate the structure, morphology and photocatalytic properties of the photocatalysts. The photocatalytic activity of the samples was evaluated by degradation of methylene blue dye (MB). The mechanism of enhancing photocatalytic activity was also discussed. The results indicate that Pd loading could not change the crystal structure and surface property of the AgNbO3 . The DRS analysis indicates that Pd loading increases the ability of visible light absorption of the catalysts. The Pd-AgNbO3 photocatalysts present the enhanced photocatalytic activity compared with the pure AgNbO3 . The photocatalytic efficiency is the highest when the sample with 0.8wt% Pd was calcined at 400 ℃ for 3 h and the MB degradation rate is 92.2%. The photocatalytic degradation of MB over the samples follows pseudo-first-order kinetics.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第12期2157-2162,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(21007021 21076099 21177050) 江苏大学高级人才启动基金(10JDG128) 镇江市社发基金(SH2011011 SH2010006) 江苏省博士创新基金(CXLX12-0666)
关键词 Pd-AgNbO3 光催化 亚甲基蓝 Pd-AgNbO3 photocatalytic methylene blue
  • 相关文献

参考文献20

  • 1Chen X, Mao S S. Chem Rev[J], 2007, 107(7): 2891.
  • 2Maeda K, Domen K. JPhys Chem Lett[J], 2010, 1(18): 2655.
  • 3Xu H, Li H, Xu Let al. lndEng Chem Res[J], 2009, 48(24): 10 771.
  • 4Kato H, Kobayashi H, Kudo A. J Phys Chem B[J], 2002, 106(48): 12 441.
  • 5Kudo A. Int J Hydrogen Energy[J], 2006, 31(2): 197.
  • 6Arney D, Hardy C, Greve Bet al. JPhotochem Photobiol A[J], 2010, 214(1): 54.
  • 7Li G, Kako T, Wang D et al. J Solid State Chem[J], 2007, 180(10): 2845.
  • 8Wang D F, Kako T, Ye J H. J Phys Chem C[J], 2009, 113(9): 3785.
  • 9Li G, Kako T, Wang D et al. Dalton Trans[J], 2009, 13:2423.
  • 10Li G Q, Yan S C, Wang Z Q et al. Dalton Trans[J], 2009(40): 8519.

同被引文献21

  • 1Li Y Y, Yao S S, Wen Wet al. Journal of Alloys and Compounds[J], 2010, 491:560.
  • 2Huo Y N, Jin Y, Zhang Y. Journal of Molecular Catalysis A Chemical[J], 2010, 331:15.
  • 3Zhang H J, Chen G. International Journal of Hydrogen Energy [J], 2010, 35:2713.
  • 4Keun S K, Zhao Y, Houk J el al. Nature [J], 2009, 457:706.
  • 5Zhang H, Lv X J, Li J H et al. ACSNano [J], 2010, 4(1): 380.
  • 6Guan Renguo(管仁国),Lian Chao(连超),Zhao Zhanyong(赵占勇)et al.稀有金属材料与工程[J],2012,9(s2):608.
  • 7Devi L G, Krishnamurthy G. Journal of Physical and ChemistryA[J], 2011, 115:460.
  • 8Li F T, Liu Y, Liu R H et al. Material Letters[J], 2010, 64:223.
  • 9Wang N, Kong D, He H C. Powder Technology[J], 2011, 207: 470.
  • 10Liu Shan(刘珊),Zhangwei(张威),LiHeping(李和平)et al.稀有金属材料与工程[J],2011,6(S1):122.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部