期刊文献+

一种无铼二代镍基单晶高温合金蠕变机制研究

Creep Deformation Mechanism in the Rhenium Free Second Generation Nickel-base Single Crystal Superalloy
原文传递
导出
摘要 通过对一种镍基单晶合金中温高应力条件下的蠕变曲线的测定和微观组织及断裂后合金中位错组态的衍衬分析,研究中温高应力条件下单晶合金的组织演化及变形特征。结果表明:在中温高应力条件下,该合金的蠕变激活能Q为(462±20)kJ/mol,表观应力指数na=4.34。表明在试验温度和应力范围内,合金具有较好的蠕变抗力。位错组态衍衬分析表明,蠕变期间切入相内的<110>超位错既可在{100}立方体滑移系中运动,也可在{111}八面体滑移系中运动;位错在运动中相遇发生位错反应,形成的超位错可交滑移至{100}立方体滑移面。位于2个不同{100}六面体滑移面的位错在运动中相遇,可发生位错反应,生成的位错可在{111}八面体滑移系中运动。 By measuring the creep curves at medium temperature and high stress of a nickel-base single crystal superalloy and analyzing the microstructure and dislocation configuration diffraction after creep fracture, the microstructure evolution and deformation mechanismof the single crystal alloy were researched. The results show that the alloy creep activation energy Q is (462 ± 20) kJ/mol under the medium temperature and high stress conditions, and the apparent stress exponent na is 4.34, indicating that the alloy possesses better creep resistance in the measuring temperature and stress range. Dislocation diffraction contrast analysis indicates that the super dislocations 110 that cut into γ phase both slip in the {100} cube slip systems and in the {111} octahedral slip systems during creep. The dislocations of movement meet and a dislocation reaction can occur to form a super dislocation which can cross slip to the cube {100} slip plane. A reaction can occur for the motion dislocation which meet in two different six-sided {100} slip planes, and the resulting dislocation can move in the {111} octahedral slip systems.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第12期2185-2190,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50571070) 沈阳工业大学博士启动资金
关键词 单晶镍基合金 蠕变 组织演化 变形特征 位错 single crystal nickel-base superalloy creep microstructure evolution creep deformation dislocation
  • 相关文献

参考文献17

  • 1Warnken N, Ma D, Mathes M et al. Mater Sci Eng A[J], 2005,413-414:267.
  • 2Pettinari F, Douin J, Saada Get al. Mater Sci Eng A[J], 2002, 325:511.
  • 3Lukas P, Preclik P, Cadek Jet al. Mater Sei Eng A[J], 2001, 298:84.
  • 4Shogo, Morimoto, Akira Yoshinari. Superalloy 1988[C]. Warrendale: The Metallurgical Society, 1988:325.
  • 5Burkholder P S. Proceedings of 3rd International Charles Parsons Turbine Conference[C]. UK: Civic Centre Newcastle upon Tyne, 1995:22.
  • 6Ross E W, O'Hara K S. Superalloys 1996[C]. Warrendale: The Minerals, Metals & Materials Society, 1996:19.
  • 7Lukas P, Preclik P, Cadek Jet al. Mater Sci Eng A[J], 2001, 298:84.
  • 8Kamaraj M, Serin K, Kolbe M et al. Mater Sci Eng A[J], 2001, 319:796.
  • 9水丽,胡壮麒.一种[001]取向镍基单晶高温合金蠕变特征[J].北京科技大学学报,2010,32(11):1459-1463. 被引量:3
  • 10刘丽荣,金涛,赵乃仁,王志辉,孙晓峰,管恒荣,胡壮麒.一种镍基单晶高温合金蠕变机制的研究[J].金属学报,2005,41(11):1215-1220. 被引量:10

二级参考文献28

  • 1刘丽荣,金涛,赵乃仁,王志辉,孙晓峰,管恒荣,胡壮麒.一种Ni基单晶高温合金[001]方向的持久性能与断裂行为[J].金属学报,2004,40(8):858-862. 被引量:22
  • 2MacLachlan D W, Knowles D M,Gunturi S, et al. A damage mechanics approach to stress rupture and creep of single crystal blade alloys//Proceedings of the 7th International Conference on Creep and Fracture of Engineering Materials and Structures. California, 1997 : 707.
  • 3Sherry A H, Pilkington R. The creep fracture of a single crystal superalloy. Mater Sci Eng A, 1993, 172(1/2) : 51.
  • 4Blavette D, Caron P, Khan T. An atom-probe study of some finescale microstruetural features in Ni-based single crystal superalloys //Superalloys 1988. Champion, USA, 1988:305.
  • 5Muller L, Glatzel U, Felle-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloy containing high volume fraction of γ' phase. Acta Metall Mater, 1992, 40(6) : 1321.
  • 6Caron P, Khan T. Improvement of creep strength in a nickel-base single crystal superalloy by heat treatment. Mater Sci Eng A, 1983, 61(2): 173.
  • 7Caron P, Henderson P J, Khan T, et al. On the effects of heat treatment on the creep behaviour of a single crystal superalloy. Scripta Metall, 1986, 20(6) : 875.
  • 8Drew G L, Reed R C, Kakehi K. Single crystal superalloys: the transition from primary to secondary creep //Superalloys 2004. Warrendale, 2004 : 127.
  • 9Lukas P, Kunz L, Svoboda M. Fatigue notch sensitivity of ultrafine-grained copper. Mater Sci Eng A, 2005, 391 (1/2) : 337.
  • 10Wright P K, Jain M, Cameron D. High cycle fatigue in a single crystal superalloy: time dependence at elevated temperature // Superalloys 2004. Warrendale, 2004:657.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部