期刊文献+

Littlewood-Paley算子的多线性交换子在加权Herz型Hardy空间上的有界性 被引量:2

Boundedness for the Multilinear Commutator of Littlewood-Paley Operators on Weighted Herz-type Hardy Spaces
下载PDF
导出
摘要 本文主要研究了Littlewood-Paley算子的多线性交换子在加权Herz型Hardy空间上的性质,并运用原子分解的方法证明了Littlewood-Paley算子的多线性交换子在加权Herz型Hardy空间上的有界性。 In this paper, some properties are considered for the multilinear commutator of Littlewood - Paley operators on weighted Herz - type Hardy spaces, and we discuss the boundedness for the muhilinear commutator of Littlewood - Paley operato on weighted Herz -type Hardy spaces by using the atomic decompositions.
出处 《安庆师范学院学报(自然科学版)》 2012年第4期15-18,25,共5页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省教育厅自然科学基金项目(KJ2011A138 KJ2012Z129)资助
关键词 Littlewood—Paley算子的多线性交换子 加权HERZ型HARDY空间 加权HERZ空间 multilinear commutator of Littlewood - Paley operators, weighted Herz - type Hardy spaces, weighted Herz spaces
  • 相关文献

参考文献8

  • 1Perez C, Trujillo -Gonzalez R. Sharp Weighted estimates for muhilinear commutators [ J ]. London Matha Soc ,2002,65 ;679 -692.
  • 2张明俊,刘岚酷.Littlewood-PaleY算子的多线性交换子在Hardy空间和Herz型Hardy空间上的有界性[J].湖南大学学报,2005,32(6):128-130.
  • 3Zhang M J,liu L Z. Sharp weighted inequality for multilinear commutator of littlewood - Paley operator [ J ]. Kragujevac J. math,2005,27 ( 1 ) : 39 - 52.
  • 4薛庆营,丁勇.Littlewood-Paley算子的多线性交换子的加权估计[J].中国科学(A辑),2009,39(3):315-332. 被引量:1
  • 5Stein. E M. Harmonic analysis : real - variable methods, orthogonality and oscillatory integrals [ M ]. Princeton, N. J. : Princeton Univ Press, 1993.
  • 6周民强.调和分析讲义[M].北京:北京大学出版社,1995,5.
  • 7Journo J. L. Calder6n - Zygmund operators, pseudo - differential operators and the Cauchy integral of Calderon [ J ]. Lecture Notes in Math, 1983,99(4) :1 - 127.
  • 8王月山.加权Herz型Hardy空间上的Littlewood-Paleyg函数[J].纯粹数学与应用数学,2001,17(3):220-226. 被引量:7

二级参考文献17

  • 1Stein E M. On some functions of Littlewood-Paley and Zygmund. Bull Amer Math Soc, 67:99-101 (1961)
  • 2Fefferman C. Inequalities for strongly singular convolution operators. Acta Math, 124:9-36 (1970)
  • 3Torchinsky A. Real-Variable Methods in Harmonic Analysis. New York: Academic Press, 1986.
  • 4Perez C, Trujillo-Gonza R. Sharp weighted estimates for multilinear commutators. J London Math Soc, 65 (2): 672-692 (2002)
  • 5Tolsa X. A proof of the weak (1,1) inequality for singular integrals with non-doubling measures based on a Calderon-Zygmund decomposition. Publ Mat, 45:163-174 (2001)
  • 6Hu G, Meng Y, Yang D. Multilinear commutators of singular integrals with non-doubling measures. Integral Equations Operator Theory, 51:235-255 (2005)
  • 7Muckenhoupt B, Wheeden R. Norm inequalities for the Littlewood-Paley function gλ^*. Trans Amer Math Soc, 191:95-111 (1974)
  • 8Liu L. A sharp endpoint estimate for a mulitilinear Littlewood-Paley operators. Georgian Math J, 11: 361-370 (2004)
  • 9Torchinsky A, Wang S. A note on the Marcinkiewicz integral. Colloq Math, 60-61:235-243 (1990)
  • 10Sakamoto M, Yabuta K. Boundedness of Marcinkiewicz functions. Studia Math, 135:103-142 (1999)

共引文献7

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部