期刊文献+

基于互信息的弱随机特征子空间生成算法

WEAK RANDOM SUBSPACE BASED ON MUTUAL INFORMATION
下载PDF
导出
摘要 集成算法是机器学习领域的研究热点。随机子空间算法是集成算法的一个主要算法。随机子空间生成的特征子集可能含有冗余特征、甚至噪声特征,影响算法的分类精度。为此,本文提出了一种基于互信息的弱随机特征子空间生成算法(WRSMI),有效去除了特征子集中的冗余特征和噪声特征。在UCI数据集上的实验结果表明,WRSMI的分类性能优于随机子空间算法。 The ensemble algorithm is a hot research field of machine learning. Random subspace algorithm is a main algorithm of ensemble algorithm. Feature subset generated by random subspace may contain redundant feature and even noise feature, affecting the classification accuracy. Therefore, in this paper, weak random subspace based on mutual information (WRSMI) algorithm is introduced. WRSMI effectively eliminates the redundancy and noise feature of feature subspace. The experimental results on UCI datasets show that, WRSMI classification performance is better than random subspace algorithm.
作者 黄丹 李志亮
出处 《南阳理工学院学报》 2012年第2期24-29,共6页 Journal of Nanyang Institute of Technology
关键词 集成学习 随机子空间 互信息 分类性能 特征子集 ensemble learning random subspace mutual information classification performance feature subset
  • 相关文献

参考文献22

  • 1Freund Y, Schapire RE. A Short Introduction to Boosting[J ]. Journal of Japanese Society for Artificial Intelligence,1999,14(5) :771 -780.
  • 2Dietterich T G. Ensemble Methods in Machine Learning[J]. First International Workshop on Multiple ClassifierSystems, 2000(1857) :1 -15.
  • 3Freund Y, Schapire R E. A decision - theoretic generali-zation of on - line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119 -139.
  • 4Miyoshi S, Hara K, Okada M. Analysis of ensemble learn-ing using simple perceptrons based on online learning theo-ry[J]. Neural Networks, 2004(157):1151 -1156.
  • 5Ho T K. The random subspace method for constructing de-cision forests[ J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,1998, 20(8) :832 - 844.
  • 6Wolpert D H. Stacked generalization [ J ]. Neural Net-works, 1992,5(2) :241 -260.
  • 7Breiman L. Bagging Predictors [ J ], Machine Learning,1996,24(2) :123 -140.
  • 8Breiman L. Random forests[ J]. Machine Learning, 2001(45) :5 -32.
  • 9Robert E, Schapire. The Strength of Weak Leamability[J]. Machine Learning,1990, 5(2) : 197 -227.
  • 10Skurichina M , Duin P W. Bagging, boosting and the ran-dom subspace method for linear classifiers[ J]. Pattern A-nalysis & Applications, 2002,5(2) :121 - 135.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部