期刊文献+

单圈T函数序列与M序列研究 被引量:4

Study on Single-Cycle T-Function Sequences and M-Sequences
原文传递
导出
摘要 在SETA 2006会议上,ZHANG Wenying和WUChuan-kun对关于变元数n=2t的单圈T函数序列的线性复杂度进行了计算。计算任意变元数的单圈T函数序列的线性复杂度和1-错线性复杂度,并且证明任意变元数为n的单圈T函数序列的最小周期为n2n。进一步推出变元数n=2t的单圈T函数序列的2n-1-错线性复杂度为n2n-2+n-1。推出的另一个结果是当n大于1时,变元数为n的单圈T函数序列不可能为M序列。最后,研究单圈函数序列与M序列之间的关系。 In SETA 2006, ZHANG Wenying and WU Chuan-kun gave the computation of linear complexity of single- cycle T-function(in n=2' variables)sequences. This time the linear complexity and the 1-error complexity of single- cycle T-function(in arbitrarily many variables)sequences are computed, and that the least period of single-cycle T-function(in n variables)sequences equals n2n is also proved. Furthermore, it is proved that the 2^n-1-error linear complexity of single-cycle T-function(in n=2'variables)sequences equals n2^n-2+n-1. Another result is that when n is greater than 1, single-cycle T-function(in n variables)sequences could not be M sequence. Finally, the relationship between single-cycle function sequence and M sequence is studied.
出处 《信息安全与通信保密》 2013年第1期36-39,共4页 Information Security and Communications Privacy
基金 保密通信重点实验室基金资助项目(编号:9140C110201110C1102)
关键词 单圈T函数(序列) 单圈函数(序列) M序列 线性复杂度 最小周期 single-cycle T-function(sequence) single-cycle function(sequence) M sequence linear complexity the least period
  • 相关文献

参考文献9

  • 1KLIMOV A, SHAMIR A. Cryptographic Application of T-functions[C]//The Ninth Workshop on Selected Areas in Cryptography-SAC 2003. Berlin: Springer-Verlag, 2004: 248-261.
  • 2ZHANG Wenying, WU Chuan-Kun. The Algebraic Normal Form, Linear Complexity and k-Error Complexity of Single-Cycle T-functions[C]//The fourth International Conference on Sequences and Their Applications 2006- SETA2006. Berlin: Springer-Verlag, 2006: 391-401.
  • 3LIDL R, NIEDERREITER H. Finite Fields[M].[s.l.]: Addison-Wesley Publishing Company, 1983 : 398-399.
  • 4KUROSAWA K, SATO F, SAKATA T, et al. A Relationship Between Linear Complexity and k-error Linear Complexity[J]. IEEE Transactions on Information Theory, 2000, 46(2): 694-698.
  • 5GAMES R A, CHAN A H. A Fast Algorithm for Determining the Complexity of a Binary Seqence with Period 2"[J]. IEEE Transactions on Information Theory, 1983, 29(1): 144-146.
  • 6RUEPPEL R A. Analysis and Design of Stream Ciphers[M]. Berlin: Springer-Verlag, 1986: 40-42.
  • 7谯通旭,祝世雄,张文政,申兵.单圈函数序列研究[J].信息安全与通信保密,2011,9(1):84-85. 被引量:1
  • 8王林,谯通旭,赵伟,刘瑶.关于完全非线性函数的非线性度的界[J].信息安全与通信保密,2011,9(11):66-67. 被引量:4
  • 9李振汕.云计算安全威胁分析[J].通信技术,2012,45(9):103-105. 被引量:15

二级参考文献18

  • 1董文军,李云强.FCSR的研究现状和发展[J].信息安全与通信保密,2007,29(8):9-11. 被引量:2
  • 2KLIMOV A, SHAMIR A. Cryptographic Application of T-functions[C]. Berlin : Springer-Verlag, 2004 : 248-261.
  • 3LIDL R, NIEDERREITER H. Finite fields[M]. [s.l.]: Addison- Wesley publishing Company, 1983 : 63-65.
  • 4BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-like Cryptosystems[J]. J. Cryptology, 1991, 4 (1): 3-72.
  • 5MATSUI M. Linear Cryptanalysis Method for DES Cipher[C]. Advances in Cryptology-EUROCRYPT'93. Berlin: Springer, 1994: 386-397.
  • 6CARLET C, DING C. Highly Nonlinear Mappings[J]. J. Complexity, 2004(20): 05-244.
  • 7CUSICK T W, DING C, RENVALL A. Stream Ciphers and Number Theory[C]. Amsterdam: North-Holland Mathematical Library, 1998.
  • 8SAMUELSON P A. How Deviant Can You Be?[J]. Journal of the American Statistical Association, 1968(63): 1522-1525.
  • 9MATHERT,KUMARASWAMYS,LATIFS.云计算安全与隐私[M].刘戈舟,杨泽明,刘宝旭.译.北京:机械工业出版社,2011.
  • 10肖国镇 梁传甲 王育民.伪随机序列及其应用[M].北京:国防工业出版社,1985..

共引文献17

同被引文献21

  • 1ADAMS C M, TRVARES S E. Generating and Counting Binary Bent Sequences [ J ]. IEEE Transactions on Infor- mation Theory, 1990,36 (05) : 1170-1173.
  • 2WEBSTER A F. Plaintext/Ciphertext Bit Dependencies in Cryptographic System[ D ]. Ontario, Canada: Department of Electrical Engeneering, Queen' s University, 1985.
  • 3PRENEEL B, LEEKWIJC K, LINDEN LV, et al. Propa- gation Characteristics of Boolean Functions [ C ]//Ad- vances in Cryptology- EUROCRYPT' 90. Berlin: Springer -Verlag, 1991 : 155-165.
  • 4ZHANG X M, ZHENG Y L. GAC-the Criterion for Glob- al Avalanche Characteristics of Cryptographic Functions [J]. Journal for Universal Computer Science, 1995, 1 (05) :316-333.
  • 5ZHOU Yu,XIE Min,XIAO Guo-zben. On the Global Av- alanche Characteristics between Two Boolean Functions and the Higher Order Nonlinearity [ J ]. Information Sci- ences,2010, 180(02) :256-265.
  • 6ZHOU Yu. On the Distribution of Autocorrelation Value of Balanced Boolean Functions [ J ]. Advances in Mathemat- ics of Communications, 2013,7 (03) : 335-347.
  • 7SIEGENTHALER T. Correlation-Immunity of Nonlinear Combining Functions for Cryptographic Applications[ J ]. IEEE Transactions on Information Theory, 1984,30(05 ) : 776-780.
  • 8SIEGENTHALER T. Methoden Fur Den Entwurf Von Stream Cipher System [ D ]. Zurich, Switzerland : ADAG Administration and Durch, 1986.
  • 9单炜娟.相关免疫函数的结构与构造及其在流密码中的应用[D].西安:西北电讯工程学院,1987.
  • 10ZHANG X. M. , ZHENG Y. L. GAC-the Criterion for Global Avalanche Characteristics of Cryptographic Func- tions [ J ]. Journal for Universal Computer Science, 1995, 1(05) :316-333.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部