摘要
在SETA 2006会议上,ZHANG Wenying和WUChuan-kun对关于变元数n=2t的单圈T函数序列的线性复杂度进行了计算。计算任意变元数的单圈T函数序列的线性复杂度和1-错线性复杂度,并且证明任意变元数为n的单圈T函数序列的最小周期为n2n。进一步推出变元数n=2t的单圈T函数序列的2n-1-错线性复杂度为n2n-2+n-1。推出的另一个结果是当n大于1时,变元数为n的单圈T函数序列不可能为M序列。最后,研究单圈函数序列与M序列之间的关系。
In SETA 2006, ZHANG Wenying and WU Chuan-kun gave the computation of linear complexity of single- cycle T-function(in n=2' variables)sequences. This time the linear complexity and the 1-error complexity of single- cycle T-function(in arbitrarily many variables)sequences are computed, and that the least period of single-cycle T-function(in n variables)sequences equals n2n is also proved. Furthermore, it is proved that the 2^n-1-error linear complexity of single-cycle T-function(in n=2'variables)sequences equals n2^n-2+n-1. Another result is that when n is greater than 1, single-cycle T-function(in n variables)sequences could not be M sequence. Finally, the relationship between single-cycle function sequence and M sequence is studied.
出处
《信息安全与通信保密》
2013年第1期36-39,共4页
Information Security and Communications Privacy
基金
保密通信重点实验室基金资助项目(编号:9140C110201110C1102)
关键词
单圈T函数(序列)
单圈函数(序列)
M序列
线性复杂度
最小周期
single-cycle T-function(sequence)
single-cycle function(sequence)
M sequence
linear complexity
the least period