摘要
针对传统红外图像增强方法存在增强后目标边缘模糊及背景噪声过增强的缺陷,结合人眼视觉特性,提出了基于视觉对比度分辨率的非线性变换算法。该算法根据人类视觉在不同背景灰度下分辨目标的能力不同,自适应调整灰度变换曲线,使目标映射到人眼分辨的敏感区域,同时使背景噪声映射到人眼分辨的不敏感区域。经测试表明:提出的算法与传统算法相比更易突出红外图像目标的细节信息及其边缘轮廓,峰值信噪比提高近1倍,对比度增益提高近0.5倍。
Traditional methods for infrared image enhancement have some problems of fuzzy edge detail and excessive enhanced background noise.Combined with human visual properties,a novel algorithm that tailors the required amount of contrast enhancement based on human vision contrast resolution is proposed.According to the difference of human vision resolution in different background gray,the algorithm has self-adaptive characteristic,which makes the target mapped to the region of suiting the human eye to distinguish the background noise.The experimental results show that the proposed algorithm owns better performance in terms of highlighting infrared image target detail information and edge contour compared to traditional methods.The peak signal to noise ratio and contrast gain of the processed images increase by 100% and 50% respectivelty.
出处
《半导体光电》
CAS
CSCD
北大核心
2012年第6期891-895,共5页
Semiconductor Optoelectronics
基金
国家自然科学基金项目(61071196)
教育部新世纪优秀人才支持计划(NCET-10-0927)
信号与信息处理重庆市市级重点实验室建设项目(CSTC
2009CA2003)
重庆市自然科学基金项目(CSTC
2009BB2287
CSTC
2010BB2398
CSTC
2010BB2411)
关键词
视觉特性
对比度分辨率
红外图像增强
visual properties
contrast resolution
infrared image enhancement