摘要
对已有的相似性度量方法进行了总结,分析了已有算法存在的不足。针对缺乏多属性客户群体间相似性度量算法以及已有的算法不满足度量特性和一致性的现状,提出了一种基于高维云模型的新算法。给出了高维云模型的概念及其应用,指出了度量应满足的性质。最后,通过实证分析,说明了该算法的优势,证明了该算法的有效性。
The existing similarity measure methods were summarized, analyzed the shortcomings of existing algorithms. In response to the lack of multiple attribute customer cluster similarity measure algorithm and the current algorithm does not satisfy the measurement characteristics and consistency, this paper puts forward a new algorithm based on multidimensional cloud model, gives the concept and its application of multidimensional cloud model, and points out the measurement's characteristics. Finally, the advantage and validity of the algorithm is proved through empirical analysis.
出处
《工业工程与管理》
CSSCI
北大核心
2012年第6期76-82,共7页
Industrial Engineering and Management
基金
国家自然科学基金资助项目(71071122)
湖北省科技厅攻关项目(20102s0014)
关键词
客户群体
相似性
度量
一致性
高维云模型
多属性
customer groups
similarity
measurement
consistency
multidimensional cloud model
multiple attribute