摘要
对源自UCI数据库的葡萄酒数据进行预处理,选取径向基函数作为最小二乘支持向量机的核函数;然后,根据"一对一"算法设计出最小二乘支持向量机多元分类器,并应用交叉验证算法对参数寻优,建立葡萄酒质量评判模型.同时,用BP神经网络、标准支持向量机分类器对葡萄酒进行训练.对比实验结果表明:最小二乘支持向量机比BP神经网络、标准支持向量机的平均分类准确率高,最高分类准确率为100%.
In this paper,the wine dataset from UCI databases is preprocessed and radial basis function is adopted as the kernel function of least square support vector machine(LS-SVM).And then a multi-classifier is designed from LS-SVM according to one-against-one algorithm.In addition,the cross-validation method is used to optimize parameters and the wine quality evaluation model is built.Meanwhile,LS-SVM is used in the wine quality evaluation and compared with the evaluation methodology based BP(back propagation) neural network and standard support vector machine.Simulation results show that the LS-SVM can achieve higher accuracy than BP neural network and standard support vector machine,with a highest 100% rate.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2013年第1期30-35,共6页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(61173071)
河南省科技攻关计划项目(112102210412)
河南省基础与前沿技术研究计划项目(112300410254)
河南省高校创新人才支持计划项目(2012HASTIT011)
关键词
最小二乘支持向量机
葡萄酒
多元分类器
交叉验证
品质评判
least square support vector machine
wine
multiple classifier
cross validation
quality evaluation