期刊文献+

一种基于最小二乘支持向量机的葡萄酒品质评判模型 被引量:5

An Evaluation Model of Wine Quality Based on Least Square Support Vector Machine
下载PDF
导出
摘要 对源自UCI数据库的葡萄酒数据进行预处理,选取径向基函数作为最小二乘支持向量机的核函数;然后,根据"一对一"算法设计出最小二乘支持向量机多元分类器,并应用交叉验证算法对参数寻优,建立葡萄酒质量评判模型.同时,用BP神经网络、标准支持向量机分类器对葡萄酒进行训练.对比实验结果表明:最小二乘支持向量机比BP神经网络、标准支持向量机的平均分类准确率高,最高分类准确率为100%. In this paper,the wine dataset from UCI databases is preprocessed and radial basis function is adopted as the kernel function of least square support vector machine(LS-SVM).And then a multi-classifier is designed from LS-SVM according to one-against-one algorithm.In addition,the cross-validation method is used to optimize parameters and the wine quality evaluation model is built.Meanwhile,LS-SVM is used in the wine quality evaluation and compared with the evaluation methodology based BP(back propagation) neural network and standard support vector machine.Simulation results show that the LS-SVM can achieve higher accuracy than BP neural network and standard support vector machine,with a highest 100% rate.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2013年第1期30-35,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61173071) 河南省科技攻关计划项目(112102210412) 河南省基础与前沿技术研究计划项目(112300410254) 河南省高校创新人才支持计划项目(2012HASTIT011)
关键词 最小二乘支持向量机 葡萄酒 多元分类器 交叉验证 品质评判 least square support vector machine wine multiple classifier cross validation quality evaluation
  • 相关文献

参考文献16

  • 1殷勇,邱明,刘云宏,易军鹏.基于遗传神经网络的酒类鉴别技术[J].农业机械学报,2003,34(6):104-106. 被引量:10
  • 2RAPTIS C G, SIETTOS C I, KIRANOUDIS C T, et al. Classification of aged wine distillates using fuzzy and neural network systems[J]. Journal of Food Engineering, 2000,46 (4) : 267-275.
  • 3CORTEZ P, CERDEIRA A, ALMEIDA F, et al. Modeling wine preferences by data mining from physicochemieal properties[J]. Decision Support Systems, 2009,47 (4) : 547-557.
  • 4BELTRAN N H, DUARTE-MERMOUD M A, et al. Feature extraction and classiication of Chilean wines[J]. Journal of Food Engineering, 2006,75 (1) : 1-10.
  • 5SUYKENS J K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letter, 1999,9(3) : 293-300.
  • 6VAPNIK V N. The nature of statistical learning theory[M]. New York: Pringer-Verlag, 1995.
  • 7VAPNIK V N. Statistical learning theory[M]. New York: Pringer-Verlag, 1998.
  • 8HE Xi-sheng, ZHE Wang, Cheng J in, et al. A simplified multi-class support vector machine with reduced dual optimization[J]. Pattern Recognition Letters, 2012,33 (1) : 71-82.
  • 9CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: The Press Syndicate of Cambridge University, 2000.
  • 10WANG Tai-yue, CHIANG Huei-min. One-against-one fuzzy support vector machine classifier: An approach to text categorization[J]. Expert Systems with Applications, 2009,36(6) :10030-10034.

二级参考文献11

共引文献21

同被引文献21

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部