期刊文献+

尺度不变特征转换特征提取优化算法研究 被引量:3

Optimization of scale-invariant feature transform(SIFT) feature extraction
下载PDF
导出
摘要 针对尺度不变特征转换(SIFT)算法时间复杂度高的缺点,提出了SIFT特征提取优化算法。分析了SIFT特征提取算法各个计算步骤的时间复杂性。对SIFT特征提取过程进行了优化,包括耗时最多的高斯金字塔的创建和计算特征描述符过程。优化算法降低了特征点提取时间,减少了特征点的重复匹配,同时保证了匹配结果的准确性。最后,实验证明了优化后的算法能有效降低时间复杂度。 Given the limitations imposed by the high time complexity of scale-invariant feature transform (SIFT) al- gorithms, an optimized SIFT feature extraction algorithm has been developed. The time complexity of the calcula- tion steps of the SIFT feature extraction algorithm was first analyzed. Secondly, the Gaussian pyramid creation and feature^point calculation process, which are the most time-consuming processes in a SIFT algorithm, were opti- mized. The optimized algorithm succeeded in reducing the feature point extraction time and reducing the duplicated feature matching, whilst at the same time guaranteeing the accuracy of the matching results. Finally, experiments showed that the optimized algorithm effectively reduced the time complexity.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期115-119,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家"863"计划重点项目(2009AA01Z433)
关键词 针对尺度不变特征转换算法 高斯金字塔 高斯核 特征描述符 特征点提取 物体识别 scale-invariant feature transform (SIFT) algorithm gaussian pyramid gaussian kernel feature de-scriptor feature point extraction object recognition
  • 相关文献

参考文献11

  • 1Lowe D G. Object recognition from local scale-invariant features[ C ] // International Conference on Computer Vi- sion, Corfu, 1999: 1150-1157.
  • 2李海涛,吴培良,孔令富.目标主色集结合SIFT的彩色目标快速识别[J].计算机科学,2009,36(12):257-258. 被引量:6
  • 3高超,张鑫,王云丽,王晖.一种基于SIFT特征的航拍图像序列自动拼接方法[J].计算机应用,2007,27(11):2789-2792. 被引量:36
  • 4Han Y B, Yin J Q, Li J P. Human face feature extraction and recognition base on SIFT [ C ]// International Sympo- sium on Computer Science and Computational Technolo- gy, 2008: 719-723.
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2005, 27(10): 1615- 1630.
  • 6Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF [ J ]. International Journal of Image Processing, 2009, 3(4) : 143-152.
  • 7Bay H, Tuytelaars T, van Gool L, et al. SURF: Speeded up robust features [ J ]. Computer Vision and Image Un- derstanding, 2008, 110(3) : 346-359.
  • 8Abdi H, Williams L J. Principal component analysis[ J]. Wiley Interdisciplinary Reviews: Computational Statis- tics, 2010, 2: 433-459.
  • 9Abdel-Hakim A E, Farag A. CSIFT: A SIFT descriptor with color invariant characteristics [ C ] //Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) , New York, 2006 : 1978-1983.
  • 10Liu C, Yuen J, Torralba A, et al. SIFT Flow: dense cor- respondence across different scenes [ C ]//European Con- ference on Computer Vision, 2008 : 28 - 42.

二级参考文献19

  • 1仵建宁,郭宝龙,冯宗哲.一种基于兴趣点匹配的图像拼接方法[J].计算机应用,2006,26(3):610-612. 被引量:32
  • 2Mikolajezyk K,Schmid C. A performance evaluation of local descriptors[A]//Proeeedings of IEEE International Conference on Computer Vision and Pattern Recognition[C]. Madison, IEEE, 2003 : 1403-1410.
  • 3Lowe D. Object recognition from local scale - invariant features [A]//Proceedings oS International Conference on Computer Vision[C]. Vancouver, ICCV, 1999: 1150-1157.
  • 4Lowe D. Distinctive image features from scale - invariant key - points[J]. International Journal of Computer Vision, 2004, 60 (2):91-110.
  • 5Ke Y,Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [A]// Proceedings of the IEEE Computer Society Conference[C]. Washington DC, IEEE, 2004:511-517.
  • 6Abdel-Hakim E, Farag A. CSIFT: A SIFT Descriptor with Color Invariant Characteristics[A]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C]. New York, IEEE, 2006:1978-1983.
  • 7Bosch A, Zisserman A, Munoz X. Scene classification via pLSA [A],//Proceedings of the European Conference on Computer Vision[C]. Graz, ECCV, 2006 : 517-530.
  • 8HARRIS C,STEPHENS M.A combined corner and edge detector[C]// Proceedings of the 4th Alvey Vision Conference.Plessey,United Kingdom:Alvey Vision Conference,1988:147-151.
  • 9LOWE D G.Object recognition from local scale-invariant features[C]// Proceeding of ICCV.Piscataway,NJ,USA:Institute of Electrical and Electronics Engineers Inc.,1999,2:1150-1157.
  • 10LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004 60(2):91-110.

共引文献40

同被引文献31

  • 1赵萌萌,曹建秋.基于边缘角点的SIFT图像配准算法[J].重庆交通大学学报(自然科学版),2013,32(4):721-724. 被引量:4
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3刘金侠.基于特征的图像匹配和图像融合研究[D].北京:中国科学院,2013.
  • 4Lowe D G.Distinctive Image Features from Scale invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 5AbdiH,Williams L J.Principal component analysis[J].Wiley Interdisciplinary Reviews:Computational Statistics,2010,2:433-459.
  • 6Bay H.Tuytelaares T.Van Gool L.Surf:Speeded up robust features[C]//European Conference on Computer Vision.2006:404-417.
  • 7Morel J M,Yu G S.ASIFT:A new framework for fully affine invariantimage comparison[J].SIAM Journal on Image Sciences,2009,2 (2):438-469.
  • 8Ling H,Okada K.Diffusion Distance for Histogram Comparison.IEEE Conference on Computer Vision and Pattern Recognition[M].New York:IEEE Computer Society,2006.
  • 9Poppe R. A Survey on Vision-Based Human Action Recognition. Image and Vision Computing, 2010, 28(6) : 976-990.
  • 10Aggarwal J K, Ryoo M S. Human Activity Analysis: A Review. ACM Computing Surveys, 2011. DOI : 10.1145/1922649. 1922653.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部