期刊文献+

Cu-Zr-Ag-Al非晶的晶化动力学研究 被引量:3

Kinetics of Crystallization in Cu-Zr-Ag-Al Amorphous Alloy
下载PDF
导出
摘要 利用差示扫描热分析法(DSC)和X射线衍射仪(XRD),并借助Kempen模型和Kissinger方程,研究了不同加热速率下Cu45Zr45Ag7Al3非晶合金晶化过程及非等温晶化动力学.在连续加热条件下,随升温速率的加快,Cu45Zr45Ag7Al3非晶合金的特征温度Tg,Tx和Tp均向高温区移动,且过冷液相区间扩大.计算了该合金的激活能,分别为Eg=431.1kJ/mol,Ex=307.2kJ/mol和Ep=339.5kJ/mol;并计算出相应的Avrami指数n(分别为5.2和1.9),表明该非晶合金的晶化是以界面控制的多晶型晶化为主. Crystallization transformation kinetics of CU45 Zr45 AgzAla bulk metallic glasses in non-iso- thermal (continuous heating) modes were investigated by differential scanning calorimetry (DSC). Activa- tion energy for crystallization at different crystallized volume fractions was analyzed in Kissinger method. Then non-isothermal transformation kinetics was described with the Kempen model. Under the condition of continuous heating, the characterization temperature Tg, Tx and Tp of amorphous alloy Cu45 Zr45 Ag7 A13 increase with the heating rate, and the super-cooled liquid phase zone also expands gradually. The activa- tion energies of Cu45Zr45 Ag7 A13 bulk metallic glasses are 431.1, 307.2, 339.5 kJ · tool-1 and the expo- nent n are 5.2 and 1.9. The results have indicated that the crystallization processes for all the glassy alloys are polymorphic crystallization controlled by interface.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期78-81,共4页 Journal of Hunan University:Natural Sciences
基金 教育部'新世纪优秀人才资助计划'项目(NCET-10-0360)
关键词 晶化 非等温晶化 大块非晶 激活能 crvstallization non-isothermal crystallization bulk metallic glass the activation energy
  • 相关文献

参考文献16

  • 1JOHNSON W I,. Bulk amorphous metal an emerging engi- neering material[J]. JOM, 2002,54(3) =40-43.
  • 2LIU X J, CHEN G L, HOU H Y, et al. Atomistic mecha- nism for nanocrystallization of metallic glasses[J]. Acta Ma- ter, 2008, 56(12) :2760-2769.
  • 3DAS J, TANG M B, KIM K B, et al. "Work-hardenable" ductile bulk metallic glass[J]. Phys Rev Lett, 2005, 94(20) : 205501.
  • 4INOUE A,ZHANG W,ZHANG T K,et al. Kurosaka higy- strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu Hf- Ti ternary systems[J]. Acta Mater, 2001, 49(14):2646- 2652.
  • 5INOUE A,ZHANG W. Formation, thermal stability and me- chanical properties of Cu Zr AI bulk glassy alloys[J]. Mater Trans, 2002, 43:2921-2925.
  • 6KEMPEN A T W, SOMMER F, MITTEMEIJER E J. Deter- mination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth[J]. J Mater Sci, 2002, 37: 1321-1332.
  • 7KISSINGER H E. Variation of peak temperature with heating rate in diferent thermal analysis [J]. Journal of Research of the National Bureau of Standards, 1956, 57(4)..217-221.
  • 8高玉来,沈军,孙剑飞,王刚,陈德民,邢大伟,周彼德.Zr-Al-Ni-Cu大块非晶合金的变温晶化行为研究[J].稀有金属材料与工程,2003,32(7):518-521. 被引量:10
  • 9LU K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties[J]. Ma- ter Sci Eng, 1996, 16(4):161-221.
  • 10YINNON H, UHLMANN D R. Applications of thermoanalyti- cal techniques to the study of crystallization kinetics in glass- forming liquids[J]. Non-Cryst Solids, 1983, 54(3):253- 275.

二级参考文献17

  • 1Schwarz R B, He Y. Mater Sci Forum[J], 1997, 235 - 238: 231 - 240.
  • 2Liu C T, Heatherly L, Easton D S. Metall Mater Trans A [ J ],1998, 29(7): 1 811 -1 820.
  • 3Shen T D, Schwarz R B, Thompson J D. J Appl Phys[J],1999, 85(8):4 110-4 119.
  • 4Inoue A. Acta Materialia[J], 2000, 48:279 — 306.
  • 5Inoue A. Mater Sci Eng A[J], 1999, 267:171 — 183.
  • 6Inoue A, Makino A. Nanostructured Mater[J], 1997, 9:403 -412.
  • 7Masumoto T. Recent Progress in Amorphous Metallic Materials in Japan [J]. Mater Sci Eng A, 1994,179/180:8 — 16.
  • 8Mattern N, Eckert J, Seidel M. Mater Sci Eng A[J], 1997, 226 - 228:468 - 473.
  • 9Masuhr A, Busch R, Johnson W L J Non-Cryst Solids[J],1999, 250 - 252:566 - 571.
  • 10Liu J M. J Mater Sci Lett[J], 1997, 32:5 085 —5 099.

共引文献9

同被引文献32

  • 1王健,杨卓越,陈嘉砚,苏杰.304不锈钢应变诱发α′马氏体相变及对力学性能的影响[J].物理测试,2006,24(5):8-11. 被引量:21
  • 2郝晓东,张启富.相变诱导塑性钢热镀锌的研究进展[J].材料保护,2007,40(1):46-49. 被引量:13
  • 3Gargarella P, Pauly S, Song K K. . Ti Cu-Ni ShapeMemory Bulk Metalic Glass Composites[J], Acta Ma-terialia,2013,61(1) .151-162.
  • 4D,Schryvers. Unit Cell Determination in CuZr Mar-tensite by E. Lectron microscopy and X-ray Diffraction[J]. Scripta Materialia, 1997 ,36(10) :1119-1125.
  • 5G,S Firstova, J. Van Humbeeck’Y. N. Koval. High-tempe Rature Shape Memory Alloys:Some Recent De-velopments[J]. Materials Science and Engineering: A,2004,378(l-2):3.
  • 6H. Miyamoto, T. Taniwaki, T. Ohbaa. Two-stage B2-B19-B19' Martensitic Transformation in a Ti50Ni30Cu20 AlloyObserved by Synchrotron Radiation[J]. Scripta Materialia?2005,53(2):172.
  • 7Wu Y,Wang H,Wu H H. Formation of Cu-Zr-AIBulk me Tallic Glass Composites with Improved Ten-sile Properties[J], Acta Materialia,2011,59 : 2928.
  • 8Wang Y B,Qu D D, Wang X H et al. Introducing a Strain-hardening Capability to Improve the Ductility of Bulk Me-tallic Glasses Via Severe Plastic Deformation[J]. Acta Ma-terialia,2012, 60:253.
  • 9Song K K, Pauly S,Zhang Y et al. Strategy for Pin-pointing the Formation of B2 CuZr in Metastable CuZr-based Shape Memory Alloys [J]. Acta Materialia,2011,59:6620.
  • 10Z. Y. Tang, R. D. K. Misra, M. Ma et al. DeformationTwinning and Martensitic Transformation and DyamicMechanical Properties inFe-0. 07 C-23Mn-3. 1 Si-2. 8AI TRIP/TWIP Stee[J]. Materials Science and Engi-neering : A, 2015 ,624 : 186 -192.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部