期刊文献+

双槽式MFC反应器在生活污水处理中的应用研究 被引量:4

APPLICABILITYOF DOUBLE CHAMBERS MICROBIAL FUEL CELLS IN TREATING DOMESTIC SEWAGE
下载PDF
导出
摘要 现有对微生物燃料电池用于污水处理的研究多以模拟污水为原水,侧重对阳极槽的研究,而对实际生活污水的研究和对阴极槽的开发较少。研究考察了双槽式MFC反应器处理实际生活污水的产电性能和运行效果,并与乙酸钠和葡萄糖为基质的模拟废水进行了比较。研究结果表明,阳极使用实际生活污水的最低电极电势可以达到-0.232 V,输出功率密度为8 mW/m2,阳极内阻为52Ω,阳极COD去除率达到50%,pH<0.2。从阳极产电能力、COD去除效果和pH稳定性的比较中可以看出实际生活污水与乙酸钠模拟污水效果接近,好于葡萄糖模拟污水。阳极-阴极串联运行效果表明阴极在14 d左右形成生物阴极,生物阴极能以实际污水为碳源进行生长,此时电池的电动势达到0.848 V,内阻为201Ω,出水COD达到50~55 mg/L。 Existing research on microbialfuel cells for wastewater treatment almost used simulated sewage as substrate,and focused on the anode chamber,while lacked the research on actual sewage and development of cathode chamber.This research investigated theelectricitygeneration and operating results of double chambers microbial fuel cellsin treating actual domestic sewage,which was compared with simulated wastewater with sodium acetate and glucose as a substrate.The results showed that,the anode with actual sewage can reach the electrode potential of-0.232 V,power density 8 mW/m2,anode internal resistance 52Ω,anodic COD removal efficiency 50%,pH value changed in amplitude of0.2.The results ofactual domestic sewage and simulated wastewater with sodium acetate performed close in the comparison of electricity generation,COD removal efficiency and pH stability in anode,which were better than glucose.The results of anode-cathode series operation showedthat,cathode formed bio-cathode aboutin the14th day,the bio-cathode can use the actual domestic sewage as a carbon source for growth,when the electromotive force of the battery was 0.848 V,the internal resistance was 201Ω,the effluent COD was 50~55 mg/L.
作者 李欣 屈连松
出处 《水处理技术》 CAS CSCD 北大核心 2013年第1期109-113,共5页 Technology of Water Treatment
基金 国家高技术研究发展计划(863)项目(2008AA06A411)
关键词 微生物燃料电池 生物阴极 生活污水 microbial fuel cell bio-cathode domestic sewage
  • 相关文献

参考文献4

二级参考文献80

  • 1薛爱群,贾锋,齐顺章.细菌总蛋白含量测定方法的改进[J].微生物学通报,1994,21(1):58-59. 被引量:11
  • 2邹勇进,孙立贤,徐芬,杨黎妮.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究[J].高等学校化学学报,2007,28(3):510-513. 被引量:16
  • 3Bond D. R. , Holmes D. E. , Tender L. M. , et al.. Science[ J], 2002, 295:483-485.
  • 4Allen R. M. , Bennetto H. P.. Appl. Biochem. Biotechnol. [J] , 1993, 39:27-40.
  • 5Liu H. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4040-4046.
  • 6Schroler U. , Niessen J. , Scholz F.. Angew. Chem. Int. Ed. [J], 2003, 42:2880-2883.
  • 7Rabaey K. , Clauwaert P. , Aelterman P. , et al.. Environ. Sci. Technol. [J] , 2005, 39:8077-8082.
  • 8You S. J. , Zhao Q. L. , Zhang J. N., et al.. J. Power Sources[J], 2006, 162:1409-1415.
  • 9Oh S. E. , Min B. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4900-4904.
  • 10Zou Y. J. , Xiang C. L, Yang L. N. , et al.. Int. J. Hydrogen Energ. [ J ] , 2008, 33 : 4856-4862.

共引文献90

同被引文献69

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部