期刊文献+

用拉格朗日相关结构研究圆盘启动过程的流体输运 被引量:4

On the Fluid Transport In Disk Starting Process by Lagrangian Coherent Structures
原文传递
导出
摘要 利用粒子成像测速(PIV)技术,得到了圆盘启动涡环流场的速度分布和涡量分布。圆盘启动涡环流场的有限时间李雅普诺夫指数场(Finit-time Lyapunov exponents,FTLE)以及拉格朗日相关结构(Lagrangian coherent structures,LCS)被计算出来。基于圆盘启动涡环流场的有限时间李雅普诺夫指数场以及拉格朗日相关结构,通过跟踪流体质点,对圆盘启动涡环流场的输运情况进行了分析。在圆盘启动涡环形成过程中,流体发现被圆盘和相互排斥的拉格朗日相关结构分成三部分。剪切流窗口(vorticity-flux window)被发现,涡量流通过剪切流窗口进入涡核。涡环的非定常边界被确定,它由相互排斥的拉格朗日相关结构背风面、圆盘以及剪切流窗口组成。 Velocity distribution and vorticity distribution around vortex circulation field generated by disk starting were measured by using particle imaging velocimetry(PIV).The finite-time Lyapunov exponent(FTLE) field and the Lagrangian coherent structure(LCS) of the vortex flow were computed.Based on FTLE and LCS,following the tracks of a piece of fluid particles,fluid transport process of the vortex circulation field was analyzed.During the formation process of disk vortex circulation field,the fluid was found to be divided into three parts by the disk and the repelling-LCS.A vorticity-flux window was found through which the fluid with vorticity flows into the vortex core continuously and the unsteady boundary of the vortex ring which consists of the r-LCS leeward,the disk and the flux window was identified.
出处 《实验力学》 CSCD 北大核心 2012年第6期677-683,共7页 Journal of Experimental Mechanics
基金 国家自然科学基金重点项目(10832010) 中科院知识创新工程重要研究方向项目(KJCX2-YW-L05)
关键词 Lyapunov指数场 Lagrangian相关结构 圆盘起动涡环 粒子成像速度计 流体输运 涡环边界 finit-time Lyapunov exponent field Lagrangian coherent structure disk start vortex ring particle imaging velocimetry(PIV) fluid transport boundary of vortex ring
  • 相关文献

参考文献9

  • 1Gharib M,Rambod E,Shariff.K. A universal time scale for vortex ring formation[J].Journal of Fluid Mechanics,1998,(0):121-140.doi:10.1017/S0022112097008410.
  • 2Yang A L,Jia L B,Yin X Z. Experimental study of a starting vortex ring produced by a thin circular disk[J].J Bio Eng,2010.S103-S108.
  • 3李国辉,徐得名,周世平.时间序列最大Lyapunov指数的计算[J].应用科学学报,2003,21(2):127-131. 被引量:21
  • 4周云龙,刘旭,李洪伟.基于经验模式分解的气液二相流研究[J].化学工程,2011,39(10):59-62. 被引量:1
  • 5Haller G. Distinguished material surfaces and coherent structures in three-dimensional flows[J].Journal of Physics D:Applied Physics,2001.248-277.
  • 6Haller G. Lagrangian coherent structures from approximate velocity data[J].Physics of Fluids,2002.1851-1861.
  • 7Shadden S C,Lekien F,Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J].Journal of Physics D:Applied Physics,2005.271-304.
  • 8Shadden S C,Dabiri J O,Marsden J E. Lagrangian analysis of entrained and detrained fluid in vortex rings[J].Physics of Fluids,2006.047105.
  • 9Shadden S C,Katija K,Rosenfeld M. Transport and stirring induced by vortex formation[J].Journal of Fluid Mechanics,2007.315-331.

二级参考文献19

  • 1王太勇,王正英,胥永刚,李瑞欣.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96-98. 被引量:39
  • 2Benettin G, Froeschle C, Scheidecker J P. Kolmogorov entropy of a dynamical system with increasing number of degrees of freedom[J]. Phys Rev,1979,19A(8) :2454 - 2457.
  • 3Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990~64(8) :821 - 824.
  • 4Pecora L M, Carroll T L. Driving systems with chaotic signals[J]. Phys Rev, 1991,44A(4): 2374 -2383.
  • 5Henry D I Abarbanel, Brown R, Kadtke J B. Prediction in chaotic nonlinear systems : Methods for time series with broadband Fourier spectra[J]. Phys Rev,1990,41A(4):1782 - 1803.
  • 6Brown Reggie, Bryant Paul, Henry D I Abarbanel.Computing the Lyapunov spectrum of a dynamical system from an observed time series[J]. Phys Rev,1991,43A(6) :2787 - 2804.
  • 7Bremen H F V, Udwadia F E, Proskurowski W. An efficient QR based method for the computation of Lyapunov exponents[J]. Physica, 1997,101 (1) : 1 -16.
  • 8Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems[J].Prog Theor Phys, 1979,61 (6) : 1605 - 1615.
  • 9Barna G, Tsuda A I. New method for computing Lyapunov exponents[J]. Phys Lett. 1993,175A(6):.421 - 427.
  • 10Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal [J]. Phys Rev, 1983,28A(4) :2591 - 2593.

共引文献20

同被引文献39

  • 1樊未军,易琪,严明,杨茂林.驻涡燃烧室凹腔双涡结构研究[J].中国电机工程学报,2006,26(9):66-70. 被引量:46
  • 2KANG W, LEI P F, ZHANG J Z, et al. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number[J]. Journal of Fluids and Structures, 2015, 57:49- 65.
  • 3KANG W, ZHANG J Z, FENG P H. Aerodynamic anal- ysis of a localized flexible airfoil at low Reynolds numbers [J]. Communications in Computatioaal Physics, 2012, 11 (4) : 1300-1310.
  • 4KANG W, ZHANG J Z, LEI P F, et al. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number[J]. Journal of Fluids and Struc- tures, 2014, 46: 42-58.
  • 5FOX R W, MCDONALD A T, PRITCHARD P J. Intro- duction to fluid mechanics[M]. New "fork: John Wiley & Sons 1985: 408-423.
  • 6HALLER G, YUAN G. Lagrangian coherent structures and mixing in two-dimensional turbulenee[J]. Physica D: Nonlinear Phenomena, 2000, 147(3) : 352-370.
  • 7SHADDEN S C, DABIRI J O, MARSDEN J E. Lagrang- ian analysis of fluid transport in empirical vortex ring flows [J]. Physics of Fluids, 2006, 18(4): 047105.
  • 8HALLER G. A variational theory of hyperbolic lagrangian coherent structures[J]. Physica D: Nonlinear Phenome- na, 2011, 240(7): 574-598.
  • 9MATHUR M, HALLER G, PEACOCK T, et al. Un covering the Lagrangian skeleton of turbulence[J]. Physi cal Review Letters, 2007, 98(14): 144502.
  • 10Beron Vera F J, OLASCOAGA M J, GONI G J. Oceanic mesoscale eddies as revealed by Lagrangian coherent struc tures[J]. Geophysical Research Letters, 2008, 35(12): L12603.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部