期刊文献+

杂草信息实时获取技术与设备研究进展 被引量:27

Advance Techniques and Equipments for Real-time Weed Detection
下载PDF
导出
摘要 杂草信息的实时获取技术是田间杂草精准控制研究的首要问题,杂草实时获取设备是制约精准除草作业实现的瓶颈。综述了基于光谱、图像和光谱成像技术的杂草实时获取技术与设备的国内外研究现状,以促进精准杂草管理技术在我国的应用和发展。基于光谱的杂草信息获取方法较适用于实时防除作物出苗前的杂草,国外已有WeedSeeker、Weed-IT等杂草传感器。基于图像的杂草信息获取方法较适用于识别行间杂草,国外已有Autopilot、Cam Pilot、Robocrop等视觉导航产品和Robocrop InRow机械除草机防除行内杂草。基于光谱成像的杂草信息获取方法较适用于识别行内杂草,中、澳正联合研发微光子植物判别和杂草控制传感器。需要继续深入研究在复杂的开放式非结构的农田环境中,快速、准确地实时获取农田杂草信息技术。 Real-time infield weed detection is the most important technique of the precision infield weeds control. The real-time weed detection equipment is a key of the site specific weed management. Currently research is being carried out relating to weed sensor based on the spectroscopic, imaging and spectral imaging techniques. Theses advance technologies and equipments were reviewed for application them in China. The weed detection technique based on spectroscopic is suitable for classifying weeds from soil background without crop seedlings, such as the WeedSeeker and Weed-IT. The weed detection technique based on imaging is appropriate for discriminating inter-row weeds, including the Robocrop InRow mechanical weed control machine and the vision navigation product of the Autopilot, Cam Pilot and Robocrop, etc. The weed detection technique based on spectral imaging is more appropriate for distinguishing intra-row weeds, and a joint research on microphotonic plant discrimination and weed control sensor has been done by China and Australia. It is still a continuous project that how to detect infield weeds in real-time and specific under the complex and open field environment.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第1期190-195,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31272056) 国家高技术研究发展计划(863计划)资助项目(2012AA101902 2012AA10A503)
关键词 精准农业 杂草识别 实时获取 Precision farming Weed detection Real-time acquiring
  • 相关文献

参考文献39

  • 1Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems: a review [ J -. Computers and Electronics in Agriculture, 2008, 61 ( 1 ) : 63 - 78.
  • 2Christensen S, Sgaard H T, Kudsk P, et al. Site-specific weed control technologies[J]. Weed Research, 2009, 49(3) : 233 - 241.
  • 3Lo'pez-Granados F. Weed detection for site-specific weed management: mapping and real time approaches[ J]. Weed Research, 2011,51(1): 1 -11.
  • 4Singh K, Agrawal K N, Bora G C. Advanced techniques for weed and crop identification for site specific weed management[ J]. Biosystems Engineering, 2011 , 109(1) : 52 -64.
  • 5Wang N, Zhang N, Wei J, et al. A real-time, embedded, weed-detection system for use in wheat fields [ J]. Biosystems Engineering, 2007,98 ( 3 ) :276 - 285.
  • 6Longchamps L, Panneton B, Samson G, et al. Discrimination of corn, grasses and dicot weeds by their UV-induced fluorescence spectral signature[ J]. Precision Agriculture, 2009,11 (2) : 181 - 197.
  • 7Go'mez-Casero M T, Castillejo-Gonza'lez I L F, Garc'a-Ferrer A, et al. Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agronomy for Sustainable Development, 2010,30(3 ) : 689 - 699.
  • 8陈树人,栗移新,毛罕平,沈宝国.水稻中稗草光谱分析与识别[J].农业机械学报,2008,39(9):96-99. 被引量:7
  • 9吴迪,黄凌霞,何勇,潘家志,张赟.作物和杂草叶片的可见-近红外反射光谱特性[J].光学学报,2008,28(8):1618-1622. 被引量:20
  • 10朱登胜,潘家志,何勇.基于光谱和神经网络模型的作物与杂草识别方法研究[J].光谱学与光谱分析,2008,28(5):1102-1106. 被引量:18

二级参考文献178

共引文献210

同被引文献458

引证文献27

二级引证文献386

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部