期刊文献+

彩色图像三维六边形离散余弦变换编码 被引量:4

Three dimensional hexagonal discrete cosine transform for color image coding
下载PDF
导出
摘要 为了适应人眼视网膜细胞的正六边形结构的排列方式并充分利用彩色图像各颜色分量间的相关性,提出了一种基于六边形采样的三维离散余弦变换方法。该方法根据传统的矩形采样和正六边形采样之间的关系来完成两者的转换;然后在已有的六边形离散余弦变换的基础上提出三维六边形采样的离散余弦变换,并验证它的能量集中性。最后,在同一个模型下建立彩色图像的空间位置和颜色分量,并利用提出的方法分别以不同的子图大小对不同的图像进行整体变换。实验结果表明:相对于传统的矩形采样,提出方法的压缩比提高了约51.1%,峰值信噪比提高了约16.3%,从而有效地降低了彩色图像各颜色分量间的相关性。得到的结果表明,利用六边形采样技术可以提高采样率,降低编码速率。 A three-dimensional(3D) Discrete Cosine Transform(DCT) method based on hexagonal sampling was proposed to fit the arrangement of hexagonal structure of the human retinal cells and to take advantage of the correlation among each color component of the color images. The method com- pleted the conversion between the traditional rectangular sampling and hexagonal sampling according their relationships. Then, it proposed 3D Hexagonal sampling DCT(3D HDCT) on the basis of exist- ing HDCT and verified its energy concentration. Finally, the spatial positions and color components of the color images in the same model were established, and the different images were transformed with different sub-plot sizes in a whole way by proposed method respectively. Experimental results show that the proposed method increases the compression ratio about 51.1 % and the Peak Sigal to Noise Ratio (PSNR) about 16.3% as compared with that traditional rectangular sampling method, respec- tively. The results decrease the correlation among color components of color images effeCtively, and demonstrate that hexagonal sampling applied to image coding can improve sampling rates and decrease coding rates.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第1期217-223,共7页 Optics and Precision Engineering
基金 国家自然科学基金国际合作项目(No.60911130128) 国家自然科学基金资助项目(No.61171078)
关键词 三维离散余弦变换 彩色图像编码 六边形采样 矩形采样 Three-dimensional Discrete Cosine Transform(3D HDCT) color image coding hexagonal sampling rectangular sampling
  • 相关文献

参考文献13

  • 1PETERSON D P, MIDDLETON D. Sampling and reconstruction of wave-number-limited function in N-dimensional Euclidean spaces[J]. Information and Control, 1962, 5: 279-323.
  • 2GOLAY M J E. Hexagonal parallel pattern transforms[J]. IEEE Transactions on Computers, 1969, 18(8): 733-740.
  • 3MERSEREAU R M. The processing of hexagonally sampled two-dimensional signals[J]. Proceedings of the IEEE, 1979, 67(6): 930-949.
  • 4WATSON A B, AHUMADA A J. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex[J]. IEEE Transactions on Biomedical Engineering, 1989, 36(1):97-106.
  • 5MERSEREAU R M. A Two-dimensional FFT for Hexagonally Sampled Data[M]. Academic Press, 1980: 93-101.
  • 6吴海山,顾晓红.正六边形离散余弦变换图像编码[J].上海交通大学学报,1993,27(1):80-87. 被引量:1
  • 7NICHOLAS I, RUMMELT, JOSEPH N, el al.. Array set addressing: enabling technology for the efficient processing of hexagonally sampled imagery[J]. Journal of Electronic Imaging, 2011, 20(2):023012.1-11.
  • 8MANG S L, FU P, SANG A J, el al.. Color image coding based on hexagonal discrete cosine transform[C]. 2010 International Conference on Computational Intelligence and Software Engineering (CiSE), 2010:1-4.
  • 9VIRGIL B. The petersen-middleton theorem and sampling of seismic data[J]. Geophysical Prospecting, 2009, 57(5):823-834.
  • 10ARGYRIOU V. Sub-hexagonal phase correlation for motion estimation [J]. IEEE Transactions on Image Processing, 2011,20(1):110-120.

二级参考文献16

  • 1刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 2JensenJR.遥感数字影像处理导论[M].陈晓玲,龚威,李平湘,等译.北京:机械工业出版社,2007.
  • 3WU X L,MEMON N D.Context-based,adaptive lossless image coding[J].IEEE Transactions on Communications,1997,45(4): 437-444.
  • 4MEMON X,WU N D.Context based lossless intraband adaptive compression-cxtending calic[J].IEEE Transactions on Geoscience and Remote Sensing,2000,9: 994-1001.
  • 5MAGLI E,OLMO G,QUACCHIO E.Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J].IEEE Geoscience and Remote Sensing Letters,2004,1(1): 21-25.
  • 6MAGLI E.Multiband lossless compression of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4): 1168-1178.
  • 7ZHANG J,LIU G Z.An efficient reordering prediction-based lossless compression algorithm for hyperspectral images[J].IEEE Geoscience and Remote Sensing Letters,2007,4(2): 283-287.
  • 8MIELIKAINEN J,TOIVANEN P.Clustered DPCM for the lossless compression of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(12): 2943-2946.
  • 9ABRARDO A,BARNI M,MAGLI E,et al..Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(4): 1892-1904.
  • 10HP Labs LOCO-I/JPEG-LS Home Page..http://www.hpl.hp.com/loco.

共引文献14

同被引文献49

  • 1谢维信,曹文明,蒙山.基于Clifford代数的混合型传感器网络覆盖理论分析[J].中国科学(E辑),2007,37(8):1018-1031. 被引量:9
  • 2KOSCHAN M,ABIDI M. Digital Color Image Processing[M].Somerset NJ:John Sons Wiley,Inc,2009.
  • 3KANTOR I L,SDODOVNIKOV A S. Hypercomplex Number:An Elementary Introduction to Algebras[M].New York:springer-verlag,1989.
  • 4ELL T A. Hypercomplex spectral transform[D].Minneapolis:University of Minnesota,1992.
  • 5SANGWINE S J. Fourier transforms of colour images using quaternion,or hypercomplex numbers[J].Electronics Letters,1996,(01):1979-1980.
  • 6MOXEY C E,SANGWINE S J,ELL T A. Hypercomplex corelation techniques for vector images[J].Computer Vision and Image Understanding,2007.88-96.
  • 7SHI L,FUNT B. Quaternion color texture segmentation[J].IEEE Signal Processing Letters,2008.669-672.
  • 8YEH M H. Relationships among various 2-D quaternion Fourier transforms[J].IEEE Signal Processing Letters,2008.669-672.doi:10.1109/LSP.2008.2002714.
  • 9SUBAKAN O N,VEMURI B C. A Quaternion framework for color image smoothing and segmentation[J].Int J Com-put Vision,2011.233-250.
  • 10GUO L,ZHU M. Quaternion Fourier-Mellin moments for color images[J].Pattern Recognition,2011,(02):187-195.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部