期刊文献+

基于优化的GRNN和BP神经网络的磁滞曲线拟合对比分析 被引量:17

Contrast analysis of hysteresis curve fitting between optimized GRNN and BP neural network
下载PDF
导出
摘要 针对超磁致伸缩材料(GMM)的磁滞非线性,运用广义回归神经网络(GRNN)和前馈BP神经网络分别对GMM的磁滞回线进行非线性逼近,通过网络的训练、预测,与Jiles-Atherton(J-A)模型进行了对比,分析了两种神经网络的逼近效果,给GMM的运用起到了很好的指导作用。其中,在GRNN神经网络中,由于所取数据有限,为了扩大样本容量,采取交叉验证方法对GRNN神经网络进行了训练,采用循环算法找出了最佳的径向基函数扩展系数SPREAD,并对传统GRNN神经网络进行了优化。研究结果表明:优化后的GRNN神经网络对于磁滞回线的预测精度明显高于BP神经网络。 Aiming at the nonlinear hysteresis curve of the giant magnetostrictive material (GMM), the generalized regression neural network (GRNN)and feed-forward BP neural network were applied to approach it. With the training and prediction of the networks, as well as comparing with the Jiles-Atherton(J-A)model, the approaching effect of the networks was analyzed, which guides the applying of the GMM well. Between them, the GRNN was trained by cross-validation method in order to enlarge the sample capacity. The best radial basis function expansion coefficient(SPREAD)was found out using circulation, and the conventional GRNN was optimized. The results indicate that the accuracy on the hysteresis curve predicted by optimized GRNN is obviously higher than the one done by BP.
出处 《机电工程》 CAS 2013年第1期116-120,共5页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(50905051) 浙江省自然科学基金资助项目(Y1080004) 浙江省重点科技创新团队资助项目(2010R50003)
关键词 超磁致伸缩材料 广义回归神经网络 BP神经网络 磁滞曲线拟合 giant magnetostrictive material (GMM) generalized regression neural network (GRNN) BP neural network hysteresis curve fitting
  • 相关文献

参考文献9

  • 1CINCOT'I'I S, MARCHESI M, SERRI A. A neural network model of parametric non-linear hysteretic inductors [J]. IEEE Transactions on Magnetics, 1998, 34 (2) : 3040- 3043.
  • 2VECCHIO P D, SALVINI A. Neural network and fourrier descriptor macromodelin-g dynamic hysteresis [J]. IEEE IEEE Transactions on Magnetics, 2000, 36 (4) : 1246-1249.
  • 3MINCHEV S V. Neural networks for modeling of dynamic systems with hysteresis[ C ]//First International IEEE Sympo- sium "Inteligent Systems", 2002 : 42-47.
  • 4MAKAVEEV D, DUPRE L, DE W M,et al. Dynamic hyster- esis modeling using feedforward neural network [C]//In 15th Solft Magnetic Confenence Abstract, Bilbao, 2003: 256-258.
  • 5李贵存,刘万顺,宫德锋,藤林,王剑,邓慧琼.用于磁化曲线拟合的高精度混合型径向基函数神经网络[J].电网技术,2001,25(12):18-21. 被引量:11
  • 6史峰,王小川,郁磊,等.MTALAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
  • 7CALKINS F T, SMITH R C. Energy-based hysteresis mod- el for magnetostrictive transducers[J]. IEEE Transactions on Magnetics, 2000,36 (2) : 429-439.
  • 8CLARK A E. Magnetostrictive Rare Earth-Fe2 Compounds, in Ferromagnetic Materials[M]. E.P. Wohlfarth, Norh-Hol- land, Amsterdam, 1980.
  • 9JILES D C. Theory of the magnetomechanical effect [J]. Journal of physics D:Applied physics, 1999, 32 (15) : 1537-1546.

二级参考文献5

  • 1张小青,吴维韩.电力系统中考虑铁磁元件磁滞特性的暂态计算[J].中国电机工程学报,1993,13(2):8-14. 被引量:15
  • 2施阳.基于MATLAB的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,1998..
  • 3施阳,基于MATLAB的系统分析和设计.神经网络,1998年
  • 4张立明,人工神经网络的模型及其应用,1993年
  • 5张小青,中国电机工程学报,1977年,124卷,6期

共引文献10

同被引文献152

引证文献17

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部