期刊文献+

软件宏观拓扑结构标准结构熵和度的演化分析

Evolution Analysis of Standard Structure Entropy and Degree of Software Macro-topology
下载PDF
导出
摘要 现代软件生存周期可以看做是一个软件结构的演化过程.基于大量开源软件的统计数据,分析了标准结构熵、高度值节点数量和新增节点中低度值节点所占比例的演化,然后分析了度中心化指标较高的节点数量和新增节点中该指标较高的节点数量的演化.结果表明,标准结构熵和度中心化指标较高的节点数量普遍呈下降趋势,高度值节点数量呈上升趋势,新增节点大都为低度值节点.由此得出,成功实践的软件演化过程中,软件网络和软件结构的复杂性增长速度是逐步降低的.本研究对于指导软件开发有重要的作用. Modern software life circle can be considered as a software architecture evolutionary process.Based on the statistical data calculated from a large number of open-source software systems,the changing of standard structure entropy,the number of high degree nodes and the ratio of new added low degree nodes were analyzed respectively.And the changes in the number of nodes with high degree centrality indicator in overall network and new added nodes were subsequently analyzed.Analysis results revealed a universal phenomenon that,the number of nodes with high standard structure entropy and high degree centrality indicator was declining,while the number of high degree nodes was increasing.Most of new added nodes were lower-degree.It could be concluded that the growth of complexity in software networks and software architecture was gradually slowing down within the process of a successful software evolution.It is significant to the guide the software development.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期40-43,51,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61101121) 教育部基本科研业务费青年教师科研启动基金资助项目(N110304003)
关键词 软件网络 软件演化 标准结构熵 中心化 software networks software evolution standard structure entropy degree centralization
  • 相关文献

参考文献10

  • 1Valverde S, Cancho R F. Scale free networks from optimal design [ J ]. Europhysics Letter,2002,60 : 512 - 517.
  • 2Wen L, Kirk D, Dromey R G. Software systems as complex networks[ C ]//The 6th IEEE International Conference on Cognitive Informatics. Lake Tahoo:lEEE Computer Society, 2007 : 106 - 115.
  • 3Mens T,Magee J, Rumpe B. Evolving software architecture descriptions of critical systems[ J]. IEEE Computer,2010,43 (5) :42 -48.
  • 4Berzins V, Ham M, Lu Q, et al, A formal model for software evolution [ C ]//The 3rd International Conference on Computational Intelligence and Multimedia Applications ICCIMA' 99. New Delhi, 1999 : 143 - 147.
  • 5Hu H. Software evolution based on software architecture [ C ]//The 4th International Conference on Computer and Information Technology, C1T' 04. Hangzhou, 2004:1092 -1097.
  • 6Kalpana J, Arvinder K. Effect of software evolution on software metrics: an open source case study [ J]. ACM S1GSOFT Software Engineering Notes ,2011,36 ( 5 ) : 1 - 8.
  • 7Lehman M M,Ramil U F, Wemick P D, et al. Metrics and laws of software evolution--the nineties view [C ]//The 4th International Software Metrics Symposium. Albuquerque, 1997:20 - 32.
  • 8Xie G W, Chen J B, Neamtiu I. Towards a better understanding of software evolution--an empirical study on open-source software [ C ]//The 25th IEEE International Conference on Software Maintenance. Alberta,2009:51 - 60.
  • 9王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20. 被引量:61
  • 10谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3. 被引量:127

二级参考文献10

  • 1[1]Wasserman S, Faust K. Social Network Analysis: Methods and Applications [M]. Cambridge: Cambridge University Press,1994.
  • 2[2]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. Comput Commun Rev, 1999, 29: 251-262.
  • 3[3]Lawrence S, Giles C L. Searching the world wide web[J]. Science, 1998, 280: 98-100.
  • 4[4]Albert R, Jeong H, A.L.Baraba'si. Diameter of the world-wide web[J]. Nature ,1999, 401: 130-131.
  • 5[5]Barabasi A L, Reka Albert, Hawoong Jeong. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.
  • 6[6]Barabasi A L, Reka Albert, Hawoong Jeong. Scale-free characteristics of random networks: the topology of the world-wide web[J]. Physica A, 2000, 281:69-77.
  • 7[9]Serrano M A, Boguna M. Topology of the world trade web[J]. Physical Review E, 2003, 68: 015101-4.
  • 8阎长俊,王启家,初长庚.系统和熵[J].沈阳建筑工程学院学报,1997,13(2):213-216. 被引量:4
  • 9Gert Sabidussi. The centrality index of a graph[J] 1966,Psychometrika(4):581~603
  • 10姜璐.熵——描写复杂系统结构的一个物理量[J].系统科学学报,1994,8(4):50-55. 被引量:17

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部