期刊文献+

一类分数阶差分方程边值问题递增正解的存在性 被引量:5

Existence of Positive and Nondecreasing Solution of Boundary Value Problems for a Class of Fractional Difference Equations
下载PDF
导出
摘要 在度量空间中利用不动点定理,研究一类带有分数阶边界条件的分数阶差分方程递增正解的存在性.借助Green函数的性质,分别建立了该方程存在唯一递增非负解的充分条件及存在唯一严格递增正解的充分条件. Using fixed point theorem in metric space, the authors studied the existence of positive and nondecreasing solution for a class of the fractional difference equations with fractional boundary conditions. With the aid of some characteristics of the Green's function, we obtained sufficient conditions for the existence of a unique nonnegative and nondecreasing solution to this class of equations. And we discussed the existence and uniqueness of a positive and strictly increasing solution to this equations.
作者 葛琦 侯成敏
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第1期47-52,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11161049) 延边大学科研项目(批准号:延大科合字[2010]第004号)
关键词 分数阶边界条件 GREEN函数 严格递增 fractional boundary conditions Green' s functionl strictly increasing
  • 相关文献

参考文献9

  • 1Atici F M,Eloe P W. Initial Value Problems in Discrete Fractional Calculus[J].Proceedings of the American Mathematical Society,2009,(03):981-989.doi:10.1090/S0002-9939-08-09626-3.
  • 2Atici F M,Eloe P W. Two-Point Boundary Value Problems for Finite Fractional Difference Equations[J].Journal of Difference Equations and Applications,2011,(04):445-456.
  • 3Goodrich C S. Existence and Uniqueness of Solutions to a Fractional Difference Equation with Nonlocal Conditions[J].Comput & Math withAppl,2011,(02):191-202.
  • 4Goodrich C S. On a Fractional Boundary Value Problem with Fractional Boundary Conditions[J].Applied Mathematics Letters,2012,(08):1101-1105.
  • 5Goodrich C S. Solutions to a Discrete Right-Focal Fractional Boundary Value Problem[J].Int J of Difference Equa,2010,(02):195-216.
  • 6CHEN Fu-lai,LUO Xian-nan,ZHOU Yong. Existence Results for Nonlinear Fractional Difference Equation[J].Advances in Difference Equations,2011,(01):713201.
  • 7Goodrich C S. On Discrete Sequential Fractional Boundary Value Problems[J].Journal of Mathematical Analysis and Applications,2012,(01):111-124.
  • 8Goodrich C S. Existence of a Positive Solution to a System of Discrete Fractional Boundary Value Problems[J].Applied Mathematics and Computation,2011,(09):4740-4753.
  • 9Cabrera I J,Harjani J,Sadarangani K B. Positive and Nondecreasing Solutions to a m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation[J].Abstract and Applied Analysis,2012.826580.

同被引文献28

  • 1程金发.分数阶差分方程理论[M].厦门:厦门大学出版社,2010.
  • 2Goodrich C S.Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J].J.Comput.Math.Appl,2011,61(2):191-202.
  • 3Goodrich C S.On a fractional boundary value problem with fractional boundary conditions[J].Appl Math Lett,2012,25(8):1101-1105.
  • 4Goodrich C S.Solutions to a discrete right-focal boundary value problem[J].Int.J.Difference Equ,2010,5(2):195-216.
  • 5Atici F M,engül S.Modeling with fractional difference equations[J].J.Math.Anal.Appl,2010,369(1):1-9.
  • 6Goodrich C S.On discrete sequential fractional boundary value problems[J].J.Math.Anal.Appl,2012,385(1):111-124.
  • 7Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].J.Applied Mathematics and Computation,2011,217(9):4740-4753.
  • 8Chen Fulai,Luo Xiannan,Zhou Yong.Existence results for nonlinear fractional difference equation[J].J.Advances in Difference Equations,2011,2011(1):1-12.
  • 9Goodrich C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].Comput.Math.Appl.2011,217(9):4740-4753.
  • 10Huang Zhongmin,Hou Chengmin.Solvability of nonlocal fractional boundary value problems[J].Discrete Dynamics in Nature and Society,2013,2013(1):1-9.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部