期刊文献+

相对论谐振子解析逼近解的构造 被引量:1

Construction of Analytical Approximate Solutions to Relativistic Harmonic Oscillators
下载PDF
导出
摘要 利用牛顿谐波平衡法构造相对论谐波振子的解析逼近周期和周期解.先引入新变量,重写关于新变量的控制方程,再用牛顿谐波平衡法求解.结果表明:该方法具有较快的收敛速度;得到的解析逼近解在振幅全部取值范围内均有效;构造的解析逼近周期和周期解具有较高的精度. The Newton-harmonic balance method was used to construct analytical approximate periods and periodic solutions to the relativistic harmonic oscillator. Infroducing a new variable and rewriting the control equation in terms of the new variable, we applied the Newton-harmonic balance method to solving the resulted equation. The method yields rapid convergence with respect to exact solution, and the analytical approximations obtained are valid for the whole range of initial oscillation amplitudes. The approximate periods and periodic solutions are excellently agreed with the exact ones.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第1期83-88,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:51005196)
关键词 相对论谐振子 牛顿谐波平衡法 解析逼近解 relativistic harmonic oscillators Newton-harmonic balance method analytical approximation
  • 相关文献

参考文献10

  • 1Thornton S T,Marion J B. Classical Dynamics of Particles and Systems[M].New York:Academic Press,Inc,2004.
  • 2Harvey A L. Relativistic Harmonic Oscillator[J].Physical Review D,1972,(06):1474-1476.
  • 3Mickens R E. Periodic Solutions of the Relativistic Harmonic Oscillator[J].Journal of Sound and Vibration,1998,(05):905-908.
  • 4WU Bai-sheng,LI Peng-song. A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators[J].Meccanica,2001,(02):167-176.
  • 5李鹏松,周显波,吴柏生.适用于一类非线性振子的修正MICKENS方法[J].吉林大学学报(理学版),2002,40(1):27-30. 被引量:4
  • 6李鹏松,孙维鹏.达芬-谐波振子解析逼近的新方法[J].吉林大学学报(理学版),2006,44(2):170-174. 被引量:6
  • 7Beléndez A,Pascual C. Harmonic Balance Approach to the Periodic Solutions of the Harmonic Relativistic Oscillator[J].Physics Letters A,2007,(04):291-299.
  • 8Wu B S,Sun W P,Lim C W. An Analytical Approximate Technique for a Class of Strongly Non-linear Oscillators[J].International Journal of Non-Linear Mechanics,2006,(6/7):766-774.
  • 9Wu B S,Lim C W,Sun W P. Improved Harmonic Balance Approach to Periodic Solutions of Non-linear Jerk Equations[J].Physics Letters A,2006,(1/2):95-100.
  • 10Beléndez A,Méndez D I,Alvarez M L. Approximate Analytical Solutions for the Relativistic Oscillator Using a Linearized Harmonic Balance Method[J].International Journal of Modern Physics B,2009,(04):521-536.

二级参考文献13

  • 1李鹏松,吴柏生.达芬-谐波振子的改进解析逼近解[J].振动与冲击,2004,23(3):113-116. 被引量:6
  • 2Mickens R E. Mathematical and Numerical Study of the Duffing-Harmonic Oscillator [ J ]. J Sound Vib, 2001,244 (3) :563-567.
  • 3Nayfeh A H, Mook D T. Nonlinear Oscillations [ M]. New York: Wiley, 1979.
  • 4Mickens R E. Oscillations in Planar Dynamic Systems [ M ]. Singapore: Word Scientific, 1996.
  • 5WU Bai-seng, LI Peng-song. A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators[J]. Meccanica, 2001,36: 167-176.
  • 6WU Bai-seng, LI Peng-song. A New Approach to Nonlinear Oscillations [ J ]. Journal of Applied Mechanics, 2001,68:951-952.
  • 7Nayfeh A H.Introduction to Perturbation Techniques[M].New York:Wiley,1993.
  • 8Mickens R E.Oscillations in Planar Dynamic Systems[M].Singapore:World Scientific,1996.
  • 9Mickens R E.A Generalization of the Method of Harmonic Balance[J].J Sound & Vibration,1986,111:5l5~518.
  • 10Bogoliubov N N,Mitropolsky Y A.Asymptotic Methods in the Theory of Non-linear Oscillations[M].Delhi:Hindustan Publishing,1961.

共引文献7

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部