摘要
提出了一种小波分析与Hilbert解调谱相结合的分析方法,并应用于齿轮故障特征的提取。依据齿轮箱故障机理和频谱特征,采用小波变换将信号分解后在不同频带进行分析,实现齿轮故障中的非线性耦合特征频率的提取,然后对特征频率进行Hilbert解调以得到准确的故障信息。将其应用于汽车领域,结果表明提出的方法可以有效提高频率分辨率,实现故障特征的准确提取,对于汽车变速箱的齿轮故障诊断具有一定的价值。
A method of gear fault feature extraction based on wavelet transform and Hilbert demodulation is proposed.On the basis of fault mechanism and characteristic frequencies of gearbox fault,wavelet transform is used to decompose the vibration acceleration signals of gear faults into different frequency bands,thus realizing the extraction of nonlinear coupling characteristic frequency of gear fault,which is then used to achieve accurate fault information by Hilbert demodulation.The result shows that the proposed method can effectively improve the frequency resolution and realize accurate extraction of fault feature,and it has certain practical value for the gear fault diagnosis of automobile gearbox when applied to the automotive industry.
出处
《机械传动》
CSCD
北大核心
2013年第1期29-33,共5页
Journal of Mechanical Transmission
基金
国家自然科学基金(No.10972207)