期刊文献+

广义C-J条件在计算含铝炸药波头参数中的应用 被引量:1

Application of Generalized C-J Condition at Detonation of Aluminized Explosives
下载PDF
导出
摘要 含铝炸药的爆轰过程属于典型的非理想爆轰过程,其波头反应区处于多相反应流动状态,因此其波头处爆轰参数的计算一直是一个难点。在假定铝颗粒于波头处不参与化学反应且爆轰产物和铝颗粒压力、速度一致的条件下,应用连续介质模型描述了爆轰产物和铝颗粒两相之间的平衡关系,采用广义C-J条件给出了计算波头处爆压、物质速度和爆热的一组简单完备方程组。由实测得到的爆速,可以求得相应的爆压、物质点速度和波头处释放的热量。对三组不同含铝量(10%,20%,30%)的TNT含铝炸药和HMX含铝炸药的计算结果表明随着爆速的降低,对应的爆压、波头处物质速度和热量都会降低,不同含铝量的同一炸药在同一爆速条件下,含铝量越高对应的爆压值、波头处爆热值越大。同时,对计算假定和采用模型进行了一定的讨论。 The detonation performances of aluminized explosives are the typical non-ideal detonations. Because of the multiphase flowing and reacting at the front of detonation, it was difficult to obtain the detonation parameters by calculation. Assumed that the metal particles have no reaction at the front of detonation, and have the same pressure and velocity with the detonation products, using the continuum model and the general C-J relation,the full equations were obtained. Given the data of experimental detonation velocity,we can obtain the detonation pressure,particles velocity and the released heat at the front of detonation by solving the full equations. The calculations of two explosives with different aluminium content show that with the decrease of detonation velocity, the detonation pressure,mass velocity and explosion heat also deceased. When the explosives with different aluminium contents have the same detonation velocity,the higher the aluminium content,the larger the detonation pressure and the explosion heat. The calculation assumptions and the calculation model also given discussed.
出处 《含能材料》 EI CAS CSCD 北大核心 2013年第1期68-74,共7页 Chinese Journal of Energetic Materials
关键词 爆炸力学 含铝炸药 两相爆轰 热传导 C—J条件 explosion mechanics aluminized explosive two phase detonation heat conduction C-J condition
  • 相关文献

参考文献35

  • 1Kuhl A L,Bell J B,Beckner V E. Gas dynamic model of turbulent combustion in TNT explosions[J].Proceedings of the Combustion Institute,2011,(02):2177-2185.
  • 2Kuhl A L,Reichenbach H. Combustion effects in confined explosions[J].Proceedings of the Combustion Institute,2009,(02):2291-2298.
  • 3Oppenheim A K,Kuhl A L. Dynamic features of closed combustion systems[J].Progress in Energy and Combustion Science,2000,(4-6):533-564.doi:10.1016/S0360-1285(00)00005-8.
  • 4Oppenheim A K,Kuhl A L. Energy loss from closed combustion systems[J].Proceedings of the Combustion Institute,2000,(01):1257-1263.
  • 5Kuhl A L. Thermodynamics of combustion of TNT products in a chamber[A].2005.
  • 6Gonor A,Hooton I,Narayan S. Steady-state model of heterogeneous detonation with reactive metallic particles[A].San Diego,California,USA,2002.
  • 7Keshzvarz M H,Mofrad R T,Poor K E. Determination of performance of non-ideal aluminized explosives[J].Journal Hazardous Materoals,2006,(01):83-87.
  • 8Ilin A P,Yablunovskii G V,Gromov A A. Combustion of mixtures of ultrafine powders of aluminum and boron in air[J].Combustion Explosion and Shock Waves,1999,(06):656-659.
  • 9Kuhl A L,Ferguson R E. Spherical combustion layer in a TNT explosion[A].2001.9-14.
  • 10KuhlA L,Ferguson R E,OppenheimA K. Turbulent mixing and combustion in TNT explosions[A].Nizhni Novgorod Oblast,Russia,2001.

二级参考文献42

  • 1胡绍鸣,李辰芳.第四、第五维里系数的关联[J].计算机与应用化学,1993,10(2):115-121. 被引量:5
  • 2丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟[J].兵工学报,1994,15(4):25-29. 被引量:16
  • 3孙锦山.凝聚炸药非理想爆轰的数值模拟[J].力学进展,1995,25(1):127-133. 被引量:7
  • 4孙承纬.炸药反应速率函数的数值拟合.流体物理研究所爆轰研究论文集[M].,1993(1).428.
  • 5于川.RDX/树脂和ROT-901两种炸药冲击Hugoniot关系测试(科技报告)[M].成都:中物院流体物理研究所,1990..
  • 6花平环.凝聚炸药爆轰的热力学计算[J].私人通信,1994,.
  • 7吴雄.-[J].工业火药,1991,52(2):115-115.
  • 8张宝平 张庆明 黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001.444.
  • 9黄毅民 龙新平 鲁斌.TATB基钝感高能炸药的有效爆压[A].黄辉.2002年火炸药技术及钝感弹药学术研讨会论文集[C].绵阳: 中国工程物理研究院化工材料研究所含能材料编辑部,2002.221-223.
  • 10Anna E W. Aspects of thermobaric weaponry[J]. ADF Health, 2003,4(1):3-6.

共引文献114

同被引文献10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部