期刊文献+

一类带有Hardy项和Sobolev-Hardy临界指数椭圆方程的非平凡解

Existence of nontrivial solutions for a class of elliptic equations involving Hardy terms and Sobolev-Hardy critical exponents
下载PDF
导出
摘要 研究了一类带有Hardy项和Sobolev-Hardy临界指数的椭圆方程{-Δu-μ+h(x)/|x|2u=|u|2*(s)-2/|x|su+λ|u|q-2u,x∈Ω;u=0,x∈Ω{.通过运用变分方法和精确估计得到了非平凡解u∈D1,2(Ω)的存在性.其中:ΩRN(N≥3)是一个有界光滑区域,0∈Ω,λ>0,μ∈R,0≤s<2. It was discussed a class of elliptic equations involving Hardy terms and Sobolev-Hardy critical exponents {-△u-u+h(x)/|x|2u=|u|2·(s)-2/|x|s u+λ|u|q-2 u,x∈Ω; u=0,x∈ Ω.The existence of nontrivial solutions was proved via variational methods and delicate estimates, where Ω R N(N≥3) was an bounded domain with smooth boundary and containing the origin 0,λ〉0,u∈R,0≤s〈2.
作者 刘震 沈自飞
出处 《浙江师范大学学报(自然科学版)》 CAS 2013年第1期45-53,共9页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10971194 11101374)
关键词 HARDY不等式 Sobolev—Hardy临界指数 变分方法 非平凡解 Hardy inequality Sobolev-Hardy critical exponents variational methods nontrivial solutions
  • 相关文献

参考文献12

  • 1Brezis H,Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J].Communications on Pure and Applied Mathematics,1983,(04):437-477.
  • 2Ferrero A,Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations[J].Journal of Differential Equations,2001,(02):494-522.
  • 3Cao Daomin,Peng Shuangjie. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J].J Differentia Equations,2003,(02):424-434.
  • 4Ghoussoub N,Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents[J].American Mathematical Society,2000,(12):5703-5743.
  • 5沈自飞,杨敏波.具Hardy-Sobolev临界指数椭圆方程的非平凡解[J].数学学报(中文版),2005,48(5):999-1010. 被引量:1
  • 6Kang Dongsheng,Peng Shuangjie. Positive solutions for singular crtical elliptic problems[J].Applied Mathematics Letters,2004,(04):411-416.doi:10.1016/S0893-9659(04)90082-1.
  • 7康东升.一种奇异临界椭圆方程的非平凡解[J].数学物理学报(A辑),2006,26(5):716-720. 被引量:5
  • 8Adimurthi,Filippas S,Tertikas A. On the best constant of Hardy-Sobolev Inequalities[J].Nonlinear Analysis-Theory Methods and Applications,2009,(08):2826-2833.
  • 9García Azorero J P,Peral Alonso I. Hardy inequalities and some critical elliptic and parabolic problems[J].Journal of Differential Equations,1998,(02):441-476.
  • 10Ambrosetti A,Rabinowitz P H. Dual variational methods in critical point theory and applications[J].Journal of Functional Analysis,1973,(04):349-381.

二级参考文献21

  • 1Brezis H., Nirenberg Li, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm.Pure Appl. Math., 1983, 34: 437-477.
  • 2Janneli E., The role played by space dimension in elliptic critical problems, J. Differential Equations, 1999,156: 407-426.
  • 3Ferrero A., Gazzola F., Existence of solutions for singular critical growth semilinear elliptic equations, J.Differential Equations, 2001, 177: 494-552.
  • 4Ghoussoub N., Yuan C., Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponent, Trans. Amer. Math. Soc., 2000, 352(5): 5703-5743.
  • 5Chen J., Existence of solutions for a nonlinear PDE with an inverse square potential, J. Differential Equations,2003, 195: 497-519.
  • 6Kang D., Peng S., Postive solutions for singular critical elliptic problems, Applied Mathematics Letters, 2004,17: 411-416.
  • 7Brezis H. and Lieb E., A relation between pointwise convergence of functions and convergence of integrals,Proc. Amer. Math. Soc., 1983, 88: 486-490.
  • 8Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., 65, AMS, RI, 1986.
  • 9Caffarelli L., Kohn R., Nirenberg L., First order interpolation inequality with weights, Compositio Math.,1984, 53: 259-275.
  • 10Lions P. L., The concentration-compactness principle in the calculus of variations, The limit case, Part 2,Rev. Mat. Iberoamericana, 1985, 1: 45-121.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部