摘要
研究了一类带有Hardy项和Sobolev-Hardy临界指数的椭圆方程{-Δu-μ+h(x)/|x|2u=|u|2*(s)-2/|x|su+λ|u|q-2u,x∈Ω;u=0,x∈Ω{.通过运用变分方法和精确估计得到了非平凡解u∈D1,2(Ω)的存在性.其中:ΩRN(N≥3)是一个有界光滑区域,0∈Ω,λ>0,μ∈R,0≤s<2.
It was discussed a class of elliptic equations involving Hardy terms and Sobolev-Hardy critical exponents {-△u-u+h(x)/|x|2u=|u|2·(s)-2/|x|s u+λ|u|q-2 u,x∈Ω; u=0,x∈ Ω.The existence of nontrivial solutions was proved via variational methods and delicate estimates, where Ω R N(N≥3) was an bounded domain with smooth boundary and containing the origin 0,λ〉0,u∈R,0≤s〈2.
出处
《浙江师范大学学报(自然科学版)》
CAS
2013年第1期45-53,共9页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(10971194
11101374)