期刊文献+

一种基于数据关联的聚类集成方法 被引量:1

A clustering ensemble algorithm based on data association
下载PDF
导出
摘要 聚类集成是集成学习中的一个重要分支,其目标是解决无监督聚类分析中聚类算法的选择性、偏差性与数据特殊性等导致聚类结果不理想的问题。文章提出了一种基于数据关联的聚类集成方法(CEBDR),该算法先提取出在聚类成员中体现有关联关系的数据对象来组成新的类,然后对这些类进行二次聚类得到最终的集成结果。文中选用了一些标准数据集,采用CEBDR算法、已有的基聚类和聚类集成算法来进行对比实验,实验结果表明,该算法能够有效地提高聚类质量。 Clustering ensemble is an important part of ensemble learning, and the goal is to solve the problem of the bad result caused by the selectivity and bias of clustering algorithms and the specialness of data in the unsupervised clustering analysis. A clustering ensemble algorithm based on data associa- tion is proposed in this paper. The algorithm firstly extracts classes made of related data objects in clustering members, and then combines these clusters again to get the final result. Finally the com- parison experiments on the selected standard datasets are carried out by using the proposed algorithm and the existing algorithms of base clustering and clustering ensemble, and the results show that the proposed algorithm works better in clustering analysis.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期59-62,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61170111 611734002 61003142) 中央高校基本科研业务费专项资金资助项目(SWJTU11ZT08)
关键词 聚类集成 数据关联 聚类质量 clustering ensemble data associatiom clustering performance
  • 相关文献

参考文献8

  • 1Kuncheva L I,Hadjitodorov S T. Using diversity in cluster ensembles[A].IEEE Transactions on Systems Man and Cybernetics,2004.1214-1219.
  • 2罗会兰,危辉.一种基于聚类集成技术的混合型数据聚类算法[J].计算机科学,2010,37(11):234-238. 被引量:6
  • 3李玲玲,方帅,辛浩.改进的基于层次聚类的模糊聚类算法[J].合肥工业大学学报(自然科学版),2010,33(6):859-862. 被引量:8
  • 4Al-Shaqsi J,Wang Wenjia. A clustering ensemble method for clustering mixed data[A].2012.1-8.
  • 5Topchy A,Jain A K,Punch W F. Clustering ensembles:models of consensus and weak partitions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(12):1866-1881.
  • 6Al-Razgan M,Domeniconi C. Weighted clustering ensembles[A].2007.258-269.
  • 7Li Kai;Han Yanxia.Study of selective ensemble learning method and its diversity based on decision tree and neural network[A]中国,20101310-1315.
  • 8Gullo F,Domeniconi C,Tagarelli A. Projective clustering ensembles[A].2009.794-799.

二级参考文献17

  • 1徐艺萍,邓辉文,李阳旭.一种新的最近邻聚类算法[J].西南师范大学学报(自然科学版),2006,31(6):114-116. 被引量:8
  • 2Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981:95-107.
  • 3Fan Jiulun,Zhen Wenzhi,Xie Weixin.Suppressed fuzzy c-means clustering algorithm pattern[J].Recognition Letters,2003,24:1607-1612.
  • 4Xie X L,Beni G.A Validity measure for fuzzy c-means clustering[J].IEEE Trans PAMI,1991,13:841-847.
  • 5HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6Mckusick K B,Thompson K.COBWEB/3:A portable imple-mentation. FIA-90-6-182 . 1990
  • 7Reich Y,,Fenves S.The formation and use of abstract concepts in design Concept Formation:Knowledge and Experience in Un-supervised Learning[]..1991
  • 8Li C,Biswas G.Unsupervised Learning with Mixed Numeric and Nominal Data[].IEEE TransKnowlData Eng.2002
  • 9He Z,Xu X,Deng S.Clustering Mixed Numeric and Categorical Data:A Cluster Ensemble Approach[]..
  • 10Fred A L N.Finding Consistent Clusters in Data Partitions[].Multiple Classifier SystemsSecond International WorkshopMCS.2001

共引文献12

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部