期刊文献+

结合改进CamShift算法的人脸识别门禁系统

Access control system based on face recognition and improved CamShift algorithm
下载PDF
导出
摘要 人脸识别门禁系统已经得到了广泛的应用,但是要求被识别人员靠近图像采集设备,使用起来极不方便。解决此问题的关键是在被识别人员的正常行走过程中完成人脸识别的任务,然而在人的正常行走过程中,因为角度、表情等变化,可能会导致人脸识别产生错误的结果。针对此问题,设计了一种结合CamShift跟踪算法的人脸识别门禁系统,采用人脸检测的结果来改进CamShift跟踪算法,然后再利用这条CamShift跟踪轨迹上人脸识别结果序列来修正错误识别。实验结果表明该系统能够完成正常行走过程中的人脸识别任务,并且有更高的识别率。 The access control system based on face recognition has been widely used, but users must be close enough to the image acquisition device so that it is not convenient to use. The key to solve this problem is to comp|ete the task of face recognition in the normal walking process. However, facial angle and expressions always change during walking, which may result in incorrect face recognition results. To solve this problem, an access control system based on face recognition combined with im- proved CamShift tracking algorithm is designed. More robust face trajectory is achieved by using sparse face detection results. And the wrong face recognition result is corrected with the help of the trajectory got before. Experimental results show that the designed system can complete face recognition task in the normal walking process with higher recognition rate.
出处 《现代电子技术》 2013年第3期108-111,共4页 Modern Electronics Technique
基金 中国科学院战略性先导科技专项:物理信息功能感知系统理论研究与设计验证(XDA06020202)
关键词 人脸识别 CAMSHIFT算法 目标跟踪 门禁系统 face recognition CamShift algorithm object tracking access control system
  • 相关文献

参考文献7

  • 1NOUAR O D,ALI G,RAPHAEL C. Improved object tracking with Camshift algorithm[A].Toulouse:IEEE,2006.14-19.
  • 2周敬利,吴桂林,余胜生.基于BP神经网络的人脸检测算法[J].计算机工程,2004,30(11):34-36. 被引量:20
  • 3VIOLA P,JONES M J. Rapid object detection using a boosted cascade of simple features[J].Computer Vision and Pattern Recognition,2001.8-14.
  • 4SCHAPIRE Robert E. A short introduction to boosting[J].Journal of Japanese Society for Artificial Intelligence,1999,(05):771-780.
  • 5FERN A,GIVAN R. Online ensemble learning:an empirical study[J].Machine Learning,2003,(1/2):71-109.
  • 6BOYLE M. The effects of capture conditions on the CAMSHIFT face tracker[R].Alberta,Canada:University of Calgary,2001.
  • 7ALLEN J G,XU R Y D,JIN J S. Object tracking using camshift algorithm and multiple quantized feature spaces[A].Darlinghurst,Australia:ACM,2004.3-7.

二级参考文献5

  • 1[1]Cai J, Goshtasby A. Detecting Human Faces in Color Images. Image and Vision Computing, 1999,18(1): 63-75
  • 2[2]Yang G Z, Huang T S. Human Face Detection in a Complex Backgro- und. Pattern Recognition, 1994, 27(1): 53-63
  • 3[3]Brunelli R, Poggio T. Face Recognition: Features Versus Templates. IEEE Trans Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 4[4]Rowley H A, Baluja S, Kanade T. Neural Network-based Face Detection. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-38
  • 5闻芳,周杰,张长水,李衍达.基于局部线性映射神经网络和亮度补偿的彩色人脸检测[J].清华大学学报(自然科学版),1999,39(7):37-40. 被引量:5

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部