期刊文献+

氰(C_2N_2)在3种类型土壤中的吸附与消解动态 被引量:1

Adsorption and Degradation Dynamic of Cyanogen in Three Types of Soil
下载PDF
导出
摘要 氰(C2N2)是一种具有替代溴甲烷潜力的新熏蒸剂,明确C2N2在3种类型土壤(沙质土、壤土和粘质土)中的吸附行为与消解动态对C2N2的安全应用与风险评估具有重要的意义。采用静态平衡法研究了C2N2在3种类型土壤中的吸附与挥发行为,采用溶剂顶空法测定了C2N2在3种类型土壤中的消解动态。结果表明,土壤对C2N2具有较强的吸附能力,熏蒸4h,85%以上的C2N2被土壤吸附,熏蒸12h,98%以上的C2N2被土壤吸附,其吸附强度为粘质土>壤土>沙质土。熏蒸期间C2N2在沙质土、壤土和粘质土配气瓶内消退较快,熏蒸48h的消退率分别为94.12%、96.70%和98.27%。同时,C2N2在土壤中可快速转化产生HCN,熏蒸后1h达到最大值,其浓度为粘质土>壤土>沙质土,而后快速下降。通风后C2N2及其转化产物HCN在土壤中易于挥发和消解,C2N2和HCN在3种类型土壤中的挥发速率相近,在沙质土、壤土和粘质土中C2N2的消解半衰期分别为15.82、14.56h和12.43h,HCN分别为17.52、20.82h和24.27h。 Cyanogen(C2N2) is a new type of fumigant that has a potential to replace methyl bromide.So it is of important significance to ascertain the absorption behaviour and degradation dynamic of C2N2 in three types of soil(sand,loam and clay) for its safety application and risk assessment.Absorption and volatilization behaviour of C2N2 in three types of soil was investigated using the static equilibrium method.Degradation dynamics of C2N2 in three types of soil was determined using the solvent headspace method.Results showed that three types of soil had a very high C2N2 adsorption capacity with a rate being over 85% within 4 h of fumigation and over 98% within 12 h.The order of adsorption capacity was clay,loam and sand soil.The reduction rates of C2N2 in the headspace over three types of soil(sand,loam and clay) were very high within fumigation,94.12%,96.70% and 98.27% within 48 h of fumigation,respectively.The absorbed C2N2 could be quickly transformed into HCN.The concentration of HCN peaked within 1h of fumigation in three types of soil,in which was highest in clay soil,medial in loam soil and lowest in sand soil,and quickly began to drop after 1h of fumigation.Under the aeration condition,C2N2 and HCN transformed from C2N2 were easily volatilized and degradated in soil,and their volatilization rates in three types of soil were similar.The half lifes of C2N2 in sand,loam and clay soil were 15.82 h,14.56 h and 12.43 h,respectively,and the half lifes of HCN were 17.52 h,20.82 h and 24.27 h,respectively.
出处 《农业环境科学学报》 CAS CSCD 北大核心 2013年第1期75-80,共6页 Journal of Agro-Environment Science
基金 国家自然科学基金项目(30960081) 江西省自然科学基金资助项目(20114BAB204010)
关键词 氰(C2N2) 氰化氢(HCN) 吸附 消解动态 土壤 cyanogen(C2N2) hydrogen cyanide(HCN) adsorption degradation dynamics soil
  • 相关文献

参考文献16

  • 1Banks H J. Behaviour of gases in grain storage[C]//Fumigation and con- trolled atmosphere storage of grain//Proceedings of International Con- ference. Singapore, 1990: 237-246.
  • 2Brotherton T K, Lynn J W. The synthesis and chemistry of cyanogen[J]. Chemical Review, 1959, 59: 841-883.
  • 3CSIRO, The University of Canberra. Cyanogen fumigants and methods of fumigation using cyanogen. International Patent Application PCT/AU95/ 00409[P]. 1995.
  • 4Ren Y L. Carbonyl sulfide and cyanogen as potential new soil fumigants [C]//Proceedings of International Conference on Alternatives to Methyl Bromide. Sevilla Spain, 2002: 391-394.
  • 5Ren, Y L, Sarwar M, Wright E J. Development of cyanogen for soil fumi- gation[C]//Annual international research conference on methyl romide alternatives and emissions reductions. Florida USA, 2002: 631-634.
  • 6Ren Y L, Desmarchelier C J, Matthiessen J N, et al. First results fromethanedinitrile (C2N2) field trials in Australia[C]//Annual international research conference on methyl bromide alternatives and emissions re- ductions. California USA, 2003 : 251-253.
  • 7Bell C H. Fumigation in the 21st century[J]. Crop Protection, 2000, 19 (5) :563-569.
  • 8李保同,曾鑫年,任永林,DESMARCHELIER J M.吹扫捕集气相色谱法分析土壤中熏蒸剂氰与氰化氢残留量[J].分析测试学报,2012,31(2):225-229. 被引量:5
  • 9李保同,曾鑫年,任永林,DESMARCHELIER J M.熏蒸剂氰的制备、标定及其稳定性[J].农药,2011,50(12):888-889. 被引量:1
  • 10李保同,曾鑫年,任永林,J M DESMARCHELIER.顶空气相色谱法测定小麦中熏蒸剂氰及其代谢物氰化氢的残留量[J].农药学学报,2011,13(6):613-620. 被引量:8

二级参考文献68

  • 1刘俊锋,耿春梅,牟玉静,贺泓.羰基硫(COS)在土壤中的吸收与转化[J].环境化学,2004,23(6):615-620. 被引量:6
  • 2李新华,刘景双,王金达,孙志高.陆地生态系统含硫气体释放研究进展[J].生态环境,2005,14(1):117-120. 被引量:10
  • 3孙冬,刘新钲.熏蒸剂磷化氢的研究进展[J].安徽农业科学,2007,35(22):6854-6855. 被引量:5
  • 4Watts S F. The nmss budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide[ J]. Atmospheric Environment, 2000, 34(5) : 761-779.
  • 5Barkley M P, Palmer P I, Boone C D, et al. Global distributions of carbonyl sulfide in the upper troposphere and stratosphere[ J]. Geophysical Research Letters, 2008, 35 (14) : L14810.
  • 6Castro M S, Galloway J N. A comparison of sulfur free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere[J]. Journal of Geophysical Research, 1991, 96(8) : 15427-15437.
  • 7Kessehneier J, Teusch N, Kuhn U. Controlling variables for the uptake of atmospheric carbonyt sulfide by soil[J]. Journal of Geophysical Research, 1999, 104 (D9): 11577-11584.
  • 8Kuhn U, Ammann C, Wolf A, et al. Carbonyl sulfide exchange on an ecosystem scale : soil represents a dominant sink for atmospheric COS -Atmospheric Environment, 1999, 33(6): 995-1008.
  • 9Yi Z G, Wang X M, Sheng G Y, et al. Soil uptake of carbonyl sulfide in subtropical forests with different successional stages in south China[J]. Journal of Geophysical Research, 2007, 112(8): D08302.
  • 10Van Diest H, Kessehneier J. Soil atmosphere exehange of carbonyl sulfide (COS) regulated by diffusivity depending on water-filled pore space[ J]. Biogeosciences, 200g, 5(4): 475-483.

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部