期刊文献+

系统干扰分布阵未知的GPS/SINS故障诊断算法 被引量:3

Fault diagnosis algorithm for GPS/SINS with unknown perturbation distribution matrix
下载PDF
导出
摘要 针对系统模型不确定性、未知输入扰动,为对干扰解耦以及不依赖系统未知输入扰动分布阵先验信息,提出了系统干扰分布阵未知的GPS/SINS(global positioning system/strapdown interial navigation system)故障诊断算法。设计了MEP-UIO(model error prediction-unknow input observer)故障诊断观测器,改进了传统未知输入故障诊断观测器(UIO)假设系统未知扰动分布阵已知的不足;利用凸二次规划最优化原理,构造了关于未知扰动分布阵的目标函数,提出了满足目标函数最小的未知输入扰动分布阵的最优估计算法以及状态估计误差方差最小的故障诊断系统增益阵设计方法。仿真结果表明,提出的MEP-UIO故障诊断观测器设计算法相比传统Kalman滤波精度更高,验证了该故障诊断算法的有效性。 Aiming at the system model uncertainty and unknown input disturbances,in order to decouple the unknown input disturbances and not depend on the priori information of the system unknown input disturbance distribution matrix,a fault diagnosis algorithm for GPS/SINS (global positioning system/strapdown interial navigation system)with unknown perturbation distribution matrix is presented. The MEP-UIO( model eror prediction-unknow input observer) fault diagnosis observer was designed. We improved the deficiency of conventional unknown input observer (UIO) that is assuming the system unknown disturbance distribution matrix is known a priori. We constructed the objective function of the unknown disturbance distribution matrix adopting the convex quadratic programming optimal principle. We also proposed the optimal estimation algorithm of the unknown input disturbance distribution matrix that meets the requirement of minimum objective function and the design method of the fault diagnosis system gain matrix that makes the variance of the state estimation error minimum. The simulation results show that the proposed design algorithm of MEP-UIO fault diagnosis observer possess better accuracy compared with traditional Kalman filter, which verifies the efficiency of the fault diagnosis algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期208-214,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61104036)资助项目
关键词 故障诊断 组合导航 鲁棒性 干扰估计 fault diagnosis integrated navigation robustness distribution estimation
  • 相关文献

参考文献3

二级参考文献23

共引文献28

同被引文献34

  • 1周文瑜,焦培南.超视距雷达技术[M].北京:电子工业出版社,2007.
  • 2ITU Radiocommunication Assembly. ITU-R P. 372- 10: Radio Noise[R]. Geneva: ITU,2009.
  • 3United States Department of Commerce Oflice of Telecommunications. OT Report 74-38: Man made Radio Noise[R]. Washington, 1974.
  • 4ITU Radiocommunication Assembly. ITU-R SM. 1753-1 :The measurement method of Radio Noise[R]. Geneva: ITU,2009.
  • 5United States Department of Commerce Office of Telecommunications. NTIA Report 85-173: Atmospheric Radio Noise: World Levels and Other Characteristics [R]. Washington, 1985.
  • 6BRUGGEMANN T S, GREER D G,WALKER R A.GPS Fault detection with IMU and aircraft dynamics [ J ].IEEE Transactions on Aerospace and Electronic Systems,2011,47(1) : 305-316.
  • 7PARK S G, JEONG H C, KIM J W,et al. Magneticcompass fault detection method for GPS/INS/magneticcompass integrated navigation systems [ J] . InternationalJournal of Control, Automation, and Systems, 2011,9(2) :276-284.
  • 8TALEBI H A, KHORASANI K, TAFAZOLI S. A recur-rent neural-network-based sensor and actuator fault detec-tion and isolation for nonlinear systems with application tothe satellite ’ s attitude control subsystem [ J ]. IEEETransactions on Neural Networks, 2009,20(1) : 45-60.
  • 9TALEBI H A, KHORASANI K. A neural network-basedmultiplicative actuator fault detection and isolation of non-linear systems[ J]. IEEE Transactions on Control SystemsTechnology, 2013,21(3) :842-851.
  • 10PIRMORADI F N,SASSANI F, DE SILVA C W. Faultdetection and diagnosis in a spacecraft attitude determina-tion system [ J ]. Acta Astronautica,2009, 65 ( 5 -6 ):710-729.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部