期刊文献+

基于拓扑马蹄理论的双耦合振子系统混沌现象研究

Study of chaos in double coupled oscillators system based on topological horseshoe theory
下载PDF
导出
摘要 目前,耦合振子网络中的群体混沌现象已经成为混沌研究的新兴热点。因为群体混沌的发现历史较短,缺少成熟的研究理论和方法,主要的研究手段还是集中在诸如数值计算、功率谱和Lyapunov指数等较为粗糙的方法,难以描述群体混沌发生机制,缺乏严格数学意义下的判定。借助拓扑马蹄理论,对一双耦合振子构成的四维连续系统中的群体混沌现象进行了深入研究,在其庞加莱映射的相空间中找到了一维拉伸的拓扑马蹄,不仅严格判定了双耦合振子系统中群体混沌,而且揭示了群体混沌行为发生的动力学机制。 Recently, collective chaos in coupled oscillators networks has become a new hot spot in the chaos study. On account of short growing history of collective chaos and lacking of mature theories and methods, the main means of research is still concentrated on the rough ones such as numerical computation, power spectrum and Lyapunov exponent, which are not strict judgment in mathematics and hard to describe the mechanism of chaos. By means of topological horseshoe theory, the authors studied deeply collective chaos of one four-dimensional continuous system consisting of a pair of coupled oscillators and found that topological horseshoe with expanding in one direction in the phase space of the corresponding Poincare map. It not only strictly demonstrates by numerical way that the coupled oscillator system is chaotic, but also reveals the dynamic mechanism of chaos.
出处 《计算机应用》 CSCD 北大核心 2013年第2期304-307,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61104150 10972082)
关键词 耦合振子网络 群体混沌 拓扑马蹄 庞加莱映射 混沌严格判定 coupled oscillators network collective chaos topological horseshoe Poincar~ map strict determination ofchaos
  • 相关文献

参考文献21

  • 1GONZE D,MARKADIEU N,GOLDBETER A. Selection of inphase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2008,(03):037127.
  • 2PIKOVSKY A,ROSENBLUM M,KURTHS J. Synchronization:a universal concept in nonlinear sciences[M].Cambridge:Cambridge University Press,2003.
  • 3STROGATZ S H,ABRAMS D M,McROBIE A. Theoretical mechanics Crowd synchrony on the Millennium Bridge[J].Nature,2005,(7064):43-44.
  • 4NIXON M FRIEDMAN M,RONEN E. Synchronized cluster formation in coupled laser networks[J].Physical Review Letters,2011,(22):223901.
  • 5BENNETT M,WIESENFELD K. Averaged equations for distributed Josephson junction arrays[J].Physica D-Nonlinear Phenomena,2004,(3/4):196-214.doi:10.1016/j.physd.2004.01.004.
  • 6OSORIO I,ZAVERI H,FREI M G. Epilepsy:the intersection of neurosciences,biology,mathematics,engineering and physics[M].[S.l.]:CRC,2011.
  • 7YANG H,ZHAO F C,WANG B H. Collective chaos induced by structures of complex networks[J].Physica A:Statistical Mechanics and its Applications,2006.544-556.
  • 8LIAO G F,MA X F,WANG L D. Individual chaos implies collective chaos for weakly mixing discrete dynamical systems[J].Chaos,Solitons and Fractals,2007,(02):604-608.
  • 9NAKAGAWA N,KURAMOTO Y. Collective chaos in a population of globally coupled oscillators[J].Progress of Theoretical Physics,1993,(02):313-323.
  • 10McCULLEN N J,MORESCO P. Route to hyperchaos in a system of coupled oscillators with multistability[J].Physical Review E:Statistical Nonlinear and Soft Matter Physics,2011,(04):046212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部