期刊文献+

基于流形主动学习的遥感图像分类算法 被引量:4

Remote sensing image classification based on active learning with manifold structure
下载PDF
导出
摘要 为了高效地解决遥感图像分类问题,提出一种基于流形学习和支持向量机(SVM)的图像分类算法。在初始阶段,该算法首先利用初始训练集训练SVM,并且使用SVM找出离分类界面最近的样本;然后在所选样本中利用拉普拉斯图构建样本空间的流形结构,选出最具有代表性的样本加入训练集;最后利用高光谱图像进行实验进行验证。通过与现有的主动学习算法进行比较,结果表明该算法获得了更高的分类准确率。 To efficiently solve remote sensing image classification problem, a new classification algorithm based on manifold structure and Support Vector Machine (SVM) was proposed. Firstly, the proposed algorithm trained the SVM with initial training set and found the samples close to the decision hyperplane, then built the manifold structure of the samples by using Laplacian graph of the selected samples. The manifold structure was applied to find the representative samples for the classifier. The experimental evaluations were conducted on the hyperspectral images, and the effectiveness of the proposed algorithm was evaluated by comparing it with other active learning techniques exiting in the literature. The experimental results on data set confirm that the algorithm has higher classification accuracy.
出处 《计算机应用》 CSCD 北大核心 2013年第2期326-328,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(70701013) 中国博士后科学基金资助项目(2011M500035) 高等学校博士学科点专项科研基金资助项目(20110023110002)
关键词 主动学习 流形学习 拉普拉斯图 数据挖掘 机器学习 active learning manifold learning Laplacian graph data mining machine learning
  • 相关文献

参考文献15

  • 1HASTIE T,TIBSHIRANI R,FRIEDMAN J. The elements of statistical learning:data mining,inference,and prediction[M].New York:Springer-Verlag,2009.
  • 2BOSER B E,GUYON I M,VAPNIK V N. A training algorithm for optimal margin classifiers[A].New York:ACM,1992.144-152.
  • 3HAYKIN S O. Neural networks and learning machines[M].Cambridge:Prentice-Hall,2008.
  • 4SETTLES B. Active learning literature survey,Computer Science [Technique Report 1648][R].Madison,WI:University of Wisconsin-Madison,2010.
  • 5TONG S,KOLLER D. Support vector machine active learning with applications to text classification[J].Journal of Machine Learning Research,2002.45-66.
  • 6OLSSON F. A literature survey of active machine learning in the context of natural language processing[SICS Technical Report T2009:06][R].Kista,Sweden:Swedish Institution Computer Science,2009.
  • 7蒋华,戚玉顺.基于球结构支持向量机的多标签分类的主动学习[J].计算机应用,2012,32(5):1359-1361. 被引量:3
  • 8de SA V R. Learning classification with unlabeled data[A].San Francisco:Morgan Kaufmann Publishers,1994.112-119.
  • 9(美)CRISTIANINI N;SHAWE-TAYLOR J;李国正;王蒙;曾华军.支持向量机导论[M]北京:电子工业出版社,2004.
  • 10张伟,柳先辉,丁毅,史德明.基于支持向量回归的多时间序列自回归方法[J].计算机应用,2012,32(9):2508-2511. 被引量:4

二级参考文献93

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 3CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learn- ing [ M]. Cambridge: MIT Press, 2006.
  • 4ZHU X J, GOLDBERG A B. Introduction to semi-supervised learn-ing [ J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1): 1-130.
  • 5ZHOU D Y, BOUSQUET O, LAL T, et al. Learning with local and global consistency [ C]//Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004:321 - 328.
  • 6ZHU X J , LAFFERTY J , GHAHRAMANI Z . Semi - supervised learning using Gaussian fields and harmonic functions [ EB/OL]. [2011 -01 -01]. http://pages, cs. wisc. edu/- jerryzhu/pub/zgl. pdf.
  • 7BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled exam- ples [ J]. Journal of Machine Learning Research, 2006, 7 ( 11 ) : 2399 - 2434.
  • 8WANG F, ZHANG C S. Label propagation through linear neighbor- hoods [ J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1) : 55 - 67.
  • 9WEN GUIHUA, JIANG LIJUN, WEN JUN. Improved locally linear embedding by cognitive geometry [ C]// Life System Modeling and Simulation. Berlin: Springer-Verlag, 2007:317-325.
  • 10WU M, SCHOLKOPF B. Transductive classification via local learn- ing regularization [ EB/OL]. [2011 -01 -01]. http://jmlr, csail. mit. edu/proceedings/papers/v2/wu07a/wu07a, pdf.

共引文献13

同被引文献43

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部